
Report

Programming and Algorithms within the
Computing Curriculum

January 2022

Programming and Algorithms within the Computing Curriculum

Summary

This report explores two major strands of the computing curriculum in England:
programming and algorithms. It explores the importance of both strands and their relevance
to learners as they represent areas that allow many ideas from across computing to be
demonstrated and expressed.

The report aims to summarise the approach taken to programming and algorithms by the
National Centre for Computing Education (NCCE). It presents a research-based view of
programming that is broader than simply writing code, and encourages learners to consider
different abstract levels and ways of thinking about programming.

The report also highlights progression within these strands from the beginning of primary
school education all the way through to when learners leave school. The report includes
supporting resources and further reading for those looking for more information, courses, or
classroom content.

The report consists of six sections:

● Section 1 discusses the role and importance of the programming and algorithms
strands of the curriculum. Programming allows all learners to apply concepts from
across computing in creative and innovative ways to solve problems relevant to
them. Thinking about algorithms enables learners to plan, represent, and
communicate their understanding of a problem or task as well as their ideas. There is
also mention of the wider skills that are associated with programming (often referred
to as computational thinking skills) with particular focus on the skill of abstraction.

● Section 2 examines the current computing curriculum for England and the aims and
objectives that relate to programming and algorithms. These aims are discussed and
grouped into four themes, which align with the Levels of Abstraction (LOA) model.

● Section 3 details the NCCE’s implementation of the programming and algorithms
aspects of the computing national curriculum. The structure of the Teach Computing
Curriculum (TCC) is explored alongside an overview of the experiences provided
across all five key stages.

The design principles for the TCC are discussed with a particular focus on the levels
of abstraction framework, which has been taken from research and applied to this
curriculum. The final part of Section 3 is all about progression; each unit relating to
programming and algorithms is summarised and mapped against the levels of
abstraction framework. These key stage by key stage summaries are further collated
and presented as a progression of skills and concepts from age 5 to 19.

Programming and Algorithms within the Computing Curriculum

● Pedagogy is the focus of Section 4, in which pedagogy principles that relate to
programming and algorithms are explored and examples of specific practices
provided.

● Section 5 provides a summary of relevant professional development sessions and
courses provided by NCCE programmes.

● To conclude, Section 6 provides an overview of the key messages of this report.

Programming and Algorithms within the Computing Curriculum

Contents
1. Introduction 1

2. Programming and algorithms in the national curriculum and beyond 5

3. Programming and algorithms within the Teach Computing Curriculum 7
3.1. NCCE curriculum structure 7
3.2. Programming and algorithm principles 10
3.3. Levels of abstraction 11
3.4. Progression in programming and algorithms 13

Key stage 1 14
Key stage 2 17
Key stage 3 21
GCSE computer science and key stage 4 25
A level computer science 30

3.5. Progression across key stages 33

4. Pedagogical strategies for programming and algorithms 36
4.1. Pedagogy principles 36

Lead with concepts 37
Model everything 39
Make concrete 39
Unplug, unpack, repack 40
Challenge misconceptions 40
Create projects 41
Structure lessons 41
Work together 42
Read and explore code 42
Get hands on 42
Foster program comprehension 43

5. Professional development for computing teachers 44

6. Conclusion 45

This resource is licensed under the Open Government Licence, version 3. For more information on this licence,
see ncce.io/ogl.

http://ncce.io/ogl

Programming and Algorithms within the Computing Curriculum

1. Introduction
Programming is a practical expression of many concepts and ideas that form the subject of
computing. Through programming, learners can create new tools and experiences, solve
complex problems, and express ideas. Programming can be, and is, applied across a wide
range of contexts to solve a diverse range of problems. This broad application of the skill
alongside the increasing pervasiveness of computing in all areas of our lives makes
programming an important and relevant skill for all learners.

Programming is also a multi-faceted process that extends beyond just the writing of code.
Whilst coding is a big part of the programming process, programming also encompasses
analysis and understanding of the task or problem being addressed, designing a solution, as
well as testing and debugging.

Algorithms are an important aspect of the programming process; they provide an abstract
model of a program, meaning they are independent of any specific tools or programming
languages. As such, they can act as a plan prior to the construction of a program, a way to
communicate ideas, and something to analyse for efficiency.

Algorithms can be represented in any number of ways but some common tools include
flowcharts, pseudocode, structured English, or even simple symbols. Algorithms are precise
in nature, leaving no room for ambiguity, and always result in the same outcome (given the
same inputs) each time they are followed. How students understand and engage with
algorithms changes over time from simple program plans rooted in design and concrete
experiences to precise, structured, and formal representations.

Building a suitable programmed solution to meet a specific need or solve a particular
problem involves more than just knowledge of a programming language or the ability to
select or create an algorithm. The process involves being able to focus on only the important
aspects of a scenario, break a problem down into smaller problems, and evaluate the
success of an overall solution.

The skills that support effective programming are often referred to as computational
thinking (CT). This term is widely used but with varied definitions and perspectives about the
breadth of its application. The spectrum of views ranges from CT being intimately connected
with programming to it being a generally applicable way of thinking.

Most characterisations of computational thinking are based upon more traditional
approaches to programming and do not easily translate to emerging fields such as machine
learning and AI. As these areas become more embedded in curricula, computational thinking
frameworks may need to be expanded to incorporate relevant skills .1

1 Tedre, M., Denning, P., & Toivonen, T., CT 2.0. In: O. Seppälä, A. Petersen (eds.), 21st Koli Calling International
Conference on Computing Education Research, New York: Association of Computer Machinery. 2021. Article
number: 3. https://doi.org/10.1145/3488042.3488053

https://doi.org/10.1145/3488042.3488053

Programming and Algorithms within the Computing Curriculum

This report focuses on programming within the current national curriculum for computing in
England and therefore concerns traditional programming and related computational thinking
skills.

One skill of particular interest is ‘abstraction’. Abstraction is a skill that expert programmers
routinely use, adjusting their focus whilst developing a programmed solution. They are able
to move between the specific goals of a task, their design for a solution, the building and
coding of a program, to how that program behaves when it is run. These different
perspectives can be modelled as levels of abstraction and provide a common way to
describe the routine shift in focus that is part of programming.

To summarise, the study of programming and algorithms involves:
● Solving problems and creating solutions through computer programs
● Understanding, representing, and designing the steps needed to solve a problem
● Being able to routinely shift focus to view a solution at different levels of abstraction

The National Centre for Computing Education (NCCE) was launched in 2018 to work with
schools across England and support the teaching of computing. In the first two years, we
have engaged with 29,500 teachers, of which 7,500 teachers have participated in
professional development. The NCCE includes 34 regional Computing Hubs that take a
leadership role in their localities and support schools to deliver a high-quality computing
education.

Programming and Algorithms within the Computing Curriculum

Figure 1: Teach Computing Curriculum teacher guides.

The NCCE’s role has been to support the entire computing curriculum. A central part of this
role has been the development of the Teach Computing Curriculum , which offers teaching2

resources for each stage of the curriculum. This groundbreaking, and freely available,
curriculum supports teachers and learners alike on a journey from key stage 1 to 4; it builds
upon the latest research, as well as years of expert teaching experience.

You can read more about our approach to curriculum design in our teacher guides for all key
stages. In each guide, we describe how units are structured, the progression within and
between units, as well as emphasising appropriate pedagogical approaches.

To complement these curriculum resources is the Isaac Computer Science website, which3

provides direct support to learners studying A level (and soon GCSE) computer science. The
combination of computing content and high-quality questions makes these resources ideally
suited to the classroom, self study, and revision.

3 National Centre for Computing Education. Isaac Computer Science. https://isaaccomputerscience.org/
[Accessed 17 January 2022]

2 National Centre for Computing Education. Teach Computing Curriculum. https://teachcomputing.org/curriculum
[Accessed 17 January 2022]

https://teachcomputing.org/curriculum
https://teachcomputing.org/curriculum
http://isaaccomputerscience.org
https://isaaccomputerscience.org/
https://teachcomputing.org/curriculum

Programming and Algorithms within the Computing Curriculum

Together, the Teach Computing Curriculum and Isaac Computer Science cover the teaching
of computing and computer science from key stage 1 to 5 (5- to 19-year-olds). Both have
been expertly designed with progression in mind and exemplify our approach to sequencing
concepts and skills.

This report is part of a series of NCCE reports; each explores teaching and learning within a
different aspect of the curriculum. The purpose of this report is to outline the ways in which
the NCCE can support you with all aspects of the teaching and learning of programming and
algorithms. It has been written in relation to the curriculum in England, although you may
also find it interesting if you’re reading this from another context. The intended audience is
all serving teachers, prospective teachers, and educators involved in teaching computing, as
well as those leading on remote education for their school.

Programming and Algorithms within the Computing Curriculum

2. Programming and algorithms in the national
curriculum and beyond
Programming and the understanding of algorithms has become an increasingly important
part of the computing national curriculum for England over the last decade. Since 2014, the
expectation for schools is that all students between the ages of 5 and 16 should be able to
“understand and apply the fundamental principles and concepts of computer science,
including abstraction, logic, algorithms, and data representation”.

Whilst many students will go on to study computer science in greater depth through GCSE
and A level qualifications, an implicit goal of the computing national curriculum is to prepare
all students for an increasingly digital world in which programming, understanding of
algorithms, and computational thinking can, and will, be valuable skills in many careers.

Looking across the aims and key stage specifications of the computing curriculum as well4

and GCSE and A level specifications, it is possible to identify broad themes in which a5 6

learner can progress their understanding and application of programming.

The first clear theme is programs themselves; in particular, the reading and writing of them.
Students learn to read and write simple programs from their first year of school and over
time develop their understanding of key programming concepts. Initially, they focus on
sequence, repetition, selection, and variables to ensure a firm grasp of each. Later, students
encounter more complex ideas such as modularisation, recursion, and data structures. This
experience culminates in GCSE and A level qualifications with students learning about
alternative programming paradigms including object orientation and functional
programming. Throughout this journey students will use ever-more sophisticated tools and
languages.

Alongside programs and programming is the theme of algorithms, and how they differ from
programming. Students should understand that an algorithm is a representation of, or a plan
for, a program. The two are closely related, but distinct. Whilst a program follows the rules
and syntax of the language in which it’s written, an algorithm exists independently of any
language. The same ideas of sequence, selection, repetition, and variables are also the
purview of algorithms except that here they are viewed more as concepts rather than being
implemented in a particular language. Students learn what algorithms are (and what they
aren’t), learn to follow and explain them, and to use them as they design and create

6 Ofqual. GCE subject-level guidance for Computer Science. Gov.uk. Report number: Ofqual/14/5459. 2014.
https://www.gov.uk/government/publications/gce-subject-level-guidance-for-computer-science

5 Ofqual. GCSE (9 to 1) subject-level guidance for computer science. Gov.uk. Report number: Ofqual/19/6513.
2019. https://www.gov.uk/government/publications/gcse-9-to-1-subject-level-guidance-for-computer-science

4 Department for Education. National curriculum in England: Computing programmes of study. Gov.uk. 2013.
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/n
ational-curriculum-in-england-computing-programmes-of-study

https://www.gov.uk/government/publications/gce-subject-level-guidance-for-computer-science
https://www.gov.uk/government/publications/gcse-9-to-1-subject-level-guidance-for-computer-science
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study

Programming and Algorithms within the Computing Curriculum

programs. Later, they will recognise some common algorithms and appreciate how different
algorithms can solve the same problem in different ways with different levels of efficiency.

Before students can design their own solutions using algorithms and other tools, they need a
clear understanding of the problem they are trying to solve. Problem solving is a clear theme
in the curriculum in which students begin by creating programs to solve specific problems
and decomposing problems into smaller parts or creating abstractions that represent the
important features of an object or scenario.

The final theme related to programming is what happens when a program is run or
‘executed’. Students are expected to learn how to debug even their very first programs,
spotting and fixing simple errors. Later, they learn to trace a program, running through its
execution in their head or on paper. As they begin using new tools and creating increasingly
complex programs, the nature and number of potential errors increases and students learn
about tools and testing approaches that enable them to be more strategic and systematic in
their debugging.

Programming and Algorithms within the Computing Curriculum

3. Programming and algorithms within the Teach
Computing Curriculum

3.1. NCCE curriculum structure
As already mentioned, the NCCE exists to help teachers deliver the entire computing
curriculum. The Teach Computing Curriculum, as well as other content from the NCCE, is
built upon a ‘taxonomy’ system used to classify and categorise content. This categorisation
consists of ten strands that span the current national curriculum for computing in England.
Each strand has a combination of skills and knowledge that feature throughout the national
curriculum. Strands that are rich in knowledge form the basis of the units within the Teach
Computing Curriculum. Other strands focus on skills across all units. Table 1 gives a
summary of the ten strands.

Table 1: A summary of the ten strands in the NCCE content taxonomy.

Strand Description

Algorithms Comprehend, design, create, and evaluate algorithms

Creating media Select and create a range of media including text, images, sounds,
and video

Computing systems What a computer is and how its constituent parts function together

Design and development The activities involved in planning, creating, and evaluating
computing artefacts

Data and information How data is stored, organised, and used to represent real-world
artefacts and scenarios

Effective use of tools Use hardware and software tools to support computing work

Impact of technology How individuals, systems, and society as a whole interact with
computer systems

Networks How networks can be used to retrieve and share information and the
risks associated with them

Programming Create software to allow computers to solve problems

Safety and security Understand risks when using technology and how to protect
individuals and systems

Programming and Algorithms within the Computing Curriculum

From Table 1, we can identify three relevant taxonomy strands: ‘Programming’, ‘Algorithms’,
and ‘Design and development’. These strands are the subject of this report, and they focus
on the process of designing, building, testing, and evaluating programmed solutions to a
problem or task. These strands contain a combination of skills and concepts for learners to
master, and this report illustrates our approach to progression within both areas.

These three strands also intersect with other themes, such as ‘Computing systems’ and
‘Networks’, which focus on the environments in which programs run. These strands were the
focus of our previous report Computer Systems and Networking Within the Computing
Curriculum.

For more information on these themes and how they are addressed in the Teach Computing
Curriculum, please refer to the teacher guides for your key stages2 and the NCCE Digital
Literacy Within the Computing Curriculum report.7

During their journey through the Teach Computing Curriculum and when subsequently
studying with Isaac Computer Science, learners will encounter programming and algorithms
in a broad range of contexts. They will experience a range of tools and languages through a
variety of projects and across several contexts. This breadth of experiences is intended to
help engage and make computing relevant to the widest range of learners possible. It is also
the intention that this range of experiences will allow learners to apply and reinforce the
same knowledge and skills in multiple settings. Table 2 provides a summary of the breadth
of experiences that learners following the Teach Computing Curriculum and Isaac Computer
Science materials will receive.

7 National Centre for Computing Education. Digital literacy within the computing curriculum.
https://blog.teachcomputing.org/digital-literacy-within-the-computing-curriculum/ [Accessed 21 June 2021]

https://teachcomputing.org/curriculum
https://blog.teachcomputing.org/digital-literacy-within-the-computing-curriculum/
https://blog.teachcomputing.org/digital-literacy-within-the-computing-curriculum/
https://blog.teachcomputing.org/digital-literacy-within-the-computing-curriculum/

Programming and Algorithms within the Computing Curriculum

Table 2: The breadth of experiences available to learners using the Teach Computing Curriculum and Isaac Computer Science materials.

Key stage 1 Key stage 2 Key stage 3 Key stage 4 & GCSE Key stage 5 (A level)

Contexts - Robots (route
finding)

- Animations
- Interactive quizzes

- Music
- Drawing
- Games
- Quizzes
- Physical computing

(sensing)

- Music
- Story telling
- Interactive chat
- Games
- Quizzes
- App development
- Physical computing

- Everyday problems
- Joke machine
- Solving anagrams
- Games and puzzles
- Challenges
- Physical computing

- All revision and
study materials
presented with a
range of
contextualised
examples

Programming
Paradigms

- Simple imperative
commands and
sequences

- Some event-based
experience

- Event based
- Procedural

(Predominantly block
based)

- Event based
- Procedural

(Split between text
and block based)

- Structured and
procedural

- Assembly language
- Object oriented

(optional)

- Structured and
procedural

- Functional
- Declarative
- Event driven
- Assembly language
- Object oriented

Programming
Languages

- Simple block based
(Scratch Jr)

- Bee Bot directional
language

- Logo
- Scratch
- Crumble software
- Micro:bit Makecode

- Scratch
- Python
- App Lab
- MicroPython

- Python
- Micropython
- Little Man

Computer

- Formal pseudocode
- High-level

languages including
C# and Python

- Haskell
- SQL
- Assembly

language(s)

Programming and Algorithms within the Computing Curriculum

3.2. Programming and algorithm principles
In approaching the programming and algorithms strands of the Teach Computing
Curriculum, four key principles were followed with the goal of supporting all learners to be
capable and confident in their programming skills.

Constructs, plans, and patterns
Learners should be introduced to the constructs ‘sequence’, ‘selection’, and ‘iteration’
separately to a program’s context. They are then supported in committing common
programming ‘patterns’ to long-term memory, enabling them to recall and apply these
patterns to new problems and scenarios. Patterns might be as simple as an assignment
statement, a count-controlled loop, or validation loop. Regular retrieval of these patterns
through code reading and writing activities will help reinforce them.

Context
Learners will experience programming concepts and common programming patterns across
a range of contexts. Each new context is an opportunity to present and reinforce concepts in
a way that resonates with the broadest range of learners. The context may vary in terms of
the programming language or paradigm used, the nature of the problem being addressed,
and, importantly, the cultural relevance to the learners.

Transfer ownership
Learners should first experience using existing programs and designs, which include the
concepts they will be taught, in the appropriate context before they begin creating their own
programs. This gives learners the opportunity to develop their notional machine relevant to
the language and paradigm that is being used. As their understanding of the concepts
grows, they will begin modifying existing programs and designs, and finally, making their
own. This process develops ownership from code that is ‘not theirs’, to ‘partially theirs’ (as
they begin to edit), to ‘entirely theirs’ (as they build their own code), scaffolding the
accountability they feel when something does not work as they expect.

Perspective
As already discussed, programming involves moving between levels and being able to focus
on the task, design, code, and its execution. Learners should develop the ability to switch
perspectives as needed and understand the focus that each perspective affords. Key
affordances are concepts such as choosing the correct way to represent an algorithm in the
‘design’ level, or an appropriate debugging strategy in the ‘running the code’ level. Being
explicit about these different perspectives should help learners to identify, and switch
between these levels.

Programming and Algorithms within the Computing Curriculum

3.3. Levels of abstraction
Whilst there are several ways to characterise the process of programming, an approach
taken within the development of the Teach Computing Curriculum builds on the Levels of
Abstraction (LOA) hierarchy. Whilst not conclusive, there is some evidence to suggest that
this approach can support novices in learning to program , .8 9

This hierarchy emphasises the critical role that abstraction plays in developing programs and
describes four levels, encompassing different degrees of abstraction. We adopt these four
levels, adapting the language to make it more inclusive of younger learners. Throughout, we
refer to these levels as ‘Task’, ‘Design’, ‘Code’, and ‘Running (the project)’. The only additional
adaptation comes during physical computing projects, where the term code is replaced with
‘build’ to reflect the physical elements of these projects. The four levels can be characterised
as follows:

Task
The task outlines the problem to be solved or describes what the project should actually do.
With younger learners, a task is often defined by a teacher. As students become more
experienced, they can expand a given task or develop the task themselves. Later, they may
work from formal specifications or user requirements and even define the task
independently through user research.

Design
The design level includes the algorithm, which outlines the process and logic that will exist
within the program. The design may also contain other aspects such as artwork, sounds, and
sketches of what the project will look like or how it will be put together. This level contains
more detail than the overall task, but doesn’t yet refer to the code or programming languages
that will be used. Learners can use a range of tools to represent their design including text,
sketches, flowcharts, and diagrams.

Code
The code level represents a static program that implements the design from the level above.
This could be constructed in any number of programming languages, including block-based
and text programs. Learners will be limited to the languages and tools they are familiar with
initially; as their confidence and repertoire increases, they can be more discerning about the
best tool to implement their design.

9 Statter, D., & Armoni, M. Teaching abstraction in computer science to 7th grade students. ACM Transactions on
Computing Education, 2020, 20(1), 8. https://doi.org/10.1145/3372143

8 Perrenet, J., & Kaasenbrood, E. Levels of abstraction in students' understanding of the concept of algorithm: the
qualitative perspective. In: Proceedings of the 11th annual SIGCSE conference on Innovation and technology in
computer science education. New York, Association for Computing Machinery. 2006, 270–274.
https://doi.org/10.1145/1140124.1140196

https://doi.org/10.1145/3372143
https://doi.org/10.1145/1140124.1140196

Programming and Algorithms within the Computing Curriculum

Run the project
At the lowest level, the programmer is concerned with how the program behaves when run.
Does it run? Are there errors? Does the program behave as expected? These are all
important questions at this level. Here, learners need to know how to test their programs,
find and correct errors, as well as trace the execution of their code to ensure they understand
its behaviour

These levels of abstraction do not represent a linear pathway to developing a project. Whilst
learners will often begin at the task level and generally progress towards running the code,
they will frequently need to switch back and forth between levels.

Programming and Algorithms within the Computing Curriculum

3.4. Progression in programming and algorithms
To explore progression within these crucial strands, we consulted the objectives from the
Teach Computing Curriculum for key stages 1 to 4 (ages 5 to 16), including the GCSE
content. To examine progression further, we considered the curriculum objectives covered
by the Isaac Computer Science website, which represents all A level exam boards in
England. Each objective is already categorised to the NCCE taxonomy, which makes it easier
to show those objectives that sit within the programming and algorithms strands.

Each of these objectives were then collaboratively categorised by the levels of abstraction
that best described them. This allows us to see a broad representation of the progression
from each key stage to the next; in particular, we see how initially the focus is on developing
design and coding skills, but how running the code as part of the testing and debugging
process becomes much more prominent in later year groups. The following sections present
a breakdown of this progression by key stage, along with the concepts explored by learners
at each point in their journey.

Whilst each unit in the Teach Computing Curriculum will see learners move between all four
levels of abstraction, different units may focus on some levels more than others. For
example, most primary units have students working towards a common (and tightly defined)
task, which the learners build a design around. In later years, learners have more scope to
direct, define, and research their own task. Similarly, whilst almost all units involve pupils
running and testing their code, it may not be the particular focus of that unit. The tables
included below for each unit show the proportion of objects within that unit that explicitly
relate to each level.

Each stage of the curriculum is different; some are longer stages than others, some are
statutory while others are elective, and those resulting in a qualification generally involve
many more teaching hours. As might be expected, each key stage includes a recap of
concepts that have been encountered at an earlier stage. This is particularly noticeable at
points of transition, such as when learners move from primary to secondary education or
when learners choose to study a GCSE or A level qualification in computing. Due to varying
provision in different schools, prior knowledge cannot be assumed. This creates a degree of
overlap between key stages. These differences and intersections make direct comparisons
between key stages challenging. Instead, this report attempts to describe the focus and
progression within each educational stage.

Programming and Algorithms within the Computing Curriculum

Key stage 1
At this key stage, pupils first explore single commands, learning that each produces a fixed
repeatable outcome. Once this becomes concrete for learners, they begin to create simple
sequences of commands, creating programs that meet given tasks. To do this, pupils use
educational floor robots and ScratchJr. These programming environments both use symbols
to represent commands, which allows pupils with lower literacy levels to engage in learning
to program.

Throughout the programming units, pupils are introduced to program design and create
simple algorithms, which they represent by using symbol cards and sketches. They use
design templates and create artwork for use with their programs. This design work, and the
algorithms they create as part of this, then guide the pupils’ program creation.

As programs are created, learners run and debug them. Learners use logical reasoning and
the technique of stepping through their programs to identify where errors occur. Once bugs
are identified, pupils attempt to address them and re-test their code.

Towards the end of this key stage, pupils start to use events in ScratchJr to trigger program
actions and assign values to commands, reducing the number of commands needed in their
projects.

Programming and Algorithms within the Computing Curriculum

Table 3: Key skills and concepts at key stage 1.

Curriculum units Proportion of content at each level Key concepts and skills

Year 1: Programming A –
Moving a robot

Writing short algorithms
and programs for floor
robots, and predicting
program outcomes.

● Sequence – move from single commands to short sequences
● Design – create short algorithms to complete a task
● Representation – use symbol cards to create algorithms
● Testing – match algorithm to program and expected outcomes to identify

and rectify issues

Year 1: Programming B –
Introduction to
animation

Designing and
programming the
movement of a character
on screen to tell stories.

● Sequence – identify start and end; create multiple program sequences
● Design – choose artwork and create short algorithms
● Representation – use a design template to sketch their algorithm
● Testing – test output against expectations

Programming and Algorithms within the Computing Curriculum

Year 2: Programming A –
Robot algorithms

Creating and debugging
programs, and using
logical reasoning to make
predictions.

● Sequence – see different sequences of the same commands may create
different outputs; predict the outcome of sequences

● Design – choose and create artwork
● Representation – create algorithms using symbol cards and symbol

drawings
● Decomposition – break a task down into two smaller tasks
● Testing – match output to algorithm to identify issues

Year 2: Programming B –
An introduction to
quizzes

Designing algorithms and
programs that use events
to trigger sequences of
code to make an
interactive quiz.

● Sequence – predict the outcome of sequences of commands; use user
input to start sequences

● Design – change a design; use a design template to plan a solution;
choose artwork

● Representation – create written algorithms
● Testing – match code to algorithm to identify issues

Programming and Algorithms within the Computing Curriculum

Key stage 2
At this key stage, pupils are first introduced to the core constructs of programming:
sequence, repetition, selection, and variables. They continue to develop their understanding
of design and algorithms by producing algorithms in different formats, including annotated
sketches, flowcharts, and ordered lists. Learners also develop their program design skills by
choosing and creating artwork, planning and building models, and using a variety of design
templates.

These core constructs and design skills are then used in a range of environments such as
Scratch, Logo, Crumble, and micro:bit makecode. This allows pupils to apply the learnt
concepts in a variety of contexts. The use of Crumble and micro:bit allows students to
engage with and develop their understanding of physical computing.

In year 3, pupils create sequences in Scratch to make music. They then move on creating a
simple maze game, which uses events to trigger sequences of actions. In year 4, pupils are
introduced to iteration in the form of infinite, count-controlled, and condition-controlled
loops. Students use count-controlled loops to draw shapes and patterns in Logo and
produce a game in Scratch.

As each year group progresses, a new construct is added whilst consolidating the previous
concepts. In year 5, pupils learn about conditional statements, which they use with selection
in their programs. After this, they create models and interactive quizzes, which they control
by using repetition and selection in their programs. Finally, in year 6, pupils are taught about
variables and use them in their programs. They create games in Scratch that use variables
for different purposes and they use makecode to read and respond to variable data from
micro:bit sensors.

Throughout the key stage, learners develop their debugging skills. Pupils test their code to
see if the output meets their expectations. They check their project’s outcome against their
design, including physical models they have built. Learners also use code tracing, reading
code, and pattern matching to identify issues and fix them.

● Checking outcome against expectations
● Testing against design through code tracing, reading code, and pattern matching
● Identifying issues where output does meet expectations
● Identifying issues with a constructed model and the code that controls it
● Testing and fixing issues
● Testing code against given criteria and fixing issues

Towards the end of this key stage, pupils are able to recognise when each of the constructs
is needed for their task and how to implement it in their programs. They can build programs
that need different algorithms for different parts, and are aware of the need to test and
debug regularly throughout the process.

Programming and Algorithms within the Computing Curriculum

Table 4: Key skills and concepts at key stage 2.

Curriculum units Proportion of content at each level Key concepts and skills

Year 3: Programming A –
Sequence in music

Creating sequences in a
block-based
programming language
to make music.

● Sequence – create simple sequences that start by different methods;
recognise the importance of command order

● Design – create a design using a given template
● Representation – produce a written algorithm
● Testing – check outcome against expectations

Year 3: Programming B
– Events and actions

Writing algorithms and
programs that use a
range of events to trigger
sequences of actions.

● Sequence – create sequences that execute after the user’s key press;
use commands to set up a project so it always starts the same way

● Design – create a project design using a template
● Representation – produce written algorithms
● Testing – test against design

Year 4: Programming A –
Repetition in shapes

Using a text-based
programming language
to explore
count-controlled loops
when drawing shapes.

● Sequence – understand that longer sequences of repeated instructions
can be replaced with a loop, e.g. to draw a square

● Iteration – use count-controlled loops to draw shapes
● Subroutines – create subroutines within loops to draw patterns
● Design – plan algorithms to draw letters and shapes
● Representation – create algorithms as annotated sketches
● Decomposition – cut task into smaller challenges; create subroutines
● Testing – code tracing; reading code; pattern matching

Programming and Algorithms within the Computing Curriculum

Year 4: Programming B –
Repetition in games

Using a block-based
programming language
to explore
count-controlled and
infinite loops.

● Iteration – use infinite and count-controlled loops
● Design – use a design template; select artwork; plan actions
● Testing – identify issues where output does meet expectations

Year 5: Programming A –
Selection in physical
computing

Exploring conditions and
selection using a
programmable
microcontroller.

● Iteration – use count- and condition-controlled loops
● Conditions – use input from a button as a condition
● Selection – use ‘if...then…’ to control a physical model
● I/O – work with components connected to a microcontroller as inputs

and outputs (I/O)
● Design – sketch a model’s construction and wiring; create written

algorithms
● Testing – identify issues with a constructed model and the code that

controls it

Year 5: Programming B –
Selection in quizzes

Exploring selection in
programming to design
and code an interactive
quiz.

● Iteration – use infinite loops to repeatedly check conditions
● Conditions – create conditions, including system variables
● Selection – use ‘if...then...else…’
● Design – choose conditions and outputs for selection
● Representation – create algorithms as flowcharts
● Testing – test and fix issues

Programming and Algorithms within the Computing Curriculum

Year 6: Programming A -
Variables in games

Exploring variables when
designing and coding a
game.

● Sequence – see the effect of changing variables at different places in
programs

● Variables – change variables in different ways and by different amounts
● Operators – use arithmetic operators to change variables by different

amounts
● Design – choose artwork; create a design sketch
● Representation – make annotated sketches and written algorithms
● Testing – test code against given criteria and fix issues

Year 6: Programming B -
Sensing

Designing and coding a
project that captures
inputs from a physical
device.

● Conditions – use conditions to change variables
● Selection – use ‘if...else…’, ‘if...then…’
● Variables – set variables with sensor values
● I/O – use sensors and buttons as inputs; create different outputs
● Design – create a written design and program flowchart
● Testing – use a range of approaches to find and fix bugs

Programming and Algorithms within the Computing Curriculum

Key stage 3
For most pupils, moving into this key stage represents a moment of transition as they move
to secondary school. To accommodate the wide variety of programming experiences that
pupils from different schools bring, an initial focus of key stage 3 is to consolidate and
reinforce the understanding of core constructs of programming. These core components —
sequence, repetition, selection, and variables — are explored through an extended project in
the familiar block-based Scratch environment.

Whilst pupils are likely to have had experience of subroutines at earlier stages, at key stage 3
pupils will develop their use of subroutines as well as extend their understanding of simple
variables to incorporate the list data structure.

As pupils progress through the key stage, they will apply and combine these core constructs
and develop new programming patterns. These patterns can then also be implemented in
other contexts and programming languages. In particular, pupils in year 8 will apply their
programming knowledge to the development of a mobile app using an event-based
programming language.

Another significant step for pupils is the shift in year 8 from familiar block-based languages
to writing programs using text. Whilst the fundamental constructs they will use remain the
same, a text-based language introduces additional opportunities as well as challenges.
Whilst languages like Python provide increased control and flexibility, they also introduce the
possibility of syntax errors and depend on pupils' language and typing skills. Additionally,
features that they may have taken for granted in block-based environments such as Scratch
(e.g. graphics, concurrency) are neither available by default nor easily achievable.

Pupils continue to apply their algorithm design and representation skills but with increased
independence and agency. Projects undertaken throughout this key stage also lead them to
make more independent choices about when and how to decompose a problem as well as
taking more responsibility for testing and evaluating their programs.

Programming and Algorithms within the Computing Curriculum

Table 5: Key skills and concepts at key stage 3.

Curriculum units Proportion of content at each level Key concepts and skills

Year 7: Programming
essentials in Scratch –
part I

Applying the
programming constructs
of sequence, selection,
and iteration in Scratch.

● Sequence – follow, modify, and create sequences of instructions
● Variables – manipulate variables and trace their value
● Conditions – use conditions using logic and comparison operators
● Selection – use ‘if...then...else…’ to control program flow
● Iteration – identify where to use count-controlled loops
● I/O – respond to user input and provide meaningful output
● Testing – find and fix errors where they occur

Year 7: Programming
essentials in Scratch –
part II

Using subroutines to
decompose a problem
that incorporates lists in
Scratch.

● Decomposition – identify smaller sub-tasks of a larger task
● Subroutines – create sequences of instructions for each sub-task
● Iteration – identify where to use condition-controlled loops
● Testing – find and fix errors where they occur
● Data structures – add, remove, and retrieve items from a list
● Design – combine programming techniques to solve a problem

Programming and Algorithms within the Computing Curriculum

Year 8: Introduction to
Python programming

Applying the
programming constructs
of sequence, selection,
and iteration in Python.

● Sequence – follow, modify, and create text-based sequences
● Variables – assign and manipulate variables using text
● Selection – structure ‘if…then…else…’ blocks with syntax and/or

indentation
● Iteration – create for and while loops using text
● I/O – respond to user input and provide meaningful output using text
● Testing – define, identify, and fix syntax errors in programs

Year 8: Mobile app
development

Using event-driven
programming to create
an online gaming app.

● Decomposition – identify when a task needs to be broken down
● Conditions – use conditions as a way to trigger events
● Selection – interpret events as a form of selection (abstraction)
● Iteration – summarise the role of the event loop
● Variables – pass values of variables between parts of their app
● Decomposition – break a task down into events and related actions
● Testing – debugging within an event-based environment

Year 9: Python
programming with
sequences of data

Manipulating strings and
lists. Creating a
programming project.

● Data structures – add, remove, and retrieve items from lists
● Variables – use alongside lists to store counts, sums, averages, etc.
● Iteration – use count- and condition-controlled loops to iterate over a

list
● Design – apply lists and related techniques to solve a problem
● Testing – identify and fix errors related to indexing lists

Programming and Algorithms within the Computing Curriculum

Year 9: Physical
computing

Sensing and controlling
with the micro:bit.

● Conditions – use the state of input devices within a condition
● I/O – use physical inputs/outputs to sense and interact with the

physical world
● Selection – use physical inputs to control program flow
● Design – combine text-based programming and physical devices to

solve a problem

Programming and Algorithms within the Computing Curriculum

GCSE computer science and key stage 4

Whilst all students at key stage 4 should have the opportunity to continue to develop their
programming and algorithm skills, many will choose to delve deeper by studying GCSE
computer science. The Teach Computing Curriculum provides for both groups of students by
including a comprehensive scheme suitable for all exam boards and two additional units
that provide learning outside the GCSE specifications. Each of these units can be used with
students not working towards a GCSE qualification.

The fundamental concepts that students explore during the programming aspects of their
GCSE do not change. However, students explore these concepts in greater depth and
combine them in more structured and elaborate ways. A significant focus at this stage is on
students decomposing larger problems into ever smaller elements, building subroutines, and
passing data between them using arguments and return values.

They begin to explore more complex combinations of standard control structures,
particularly selection and iteration, nesting them to elicit more elaborate behaviours.
Students will also apply control structures to enhance the robustness of their programs
through techniques such as validation.

Their understanding of variables and data structures will expand to consider the scope of
variables within their programs and the benefits of local and global variables. Building on
their learning in the previous key stage, they will explore multi-dimensional lists as well as
records and dictionaries in order to store and process more complex data.

Students’ wider development skills will also expand and become more formalised, from
reading and tracing algorithms expressed in pseudocode to applying specific testing
strategies. They will also study some common algorithms (searching and sorting) in order to
reflect on the affordances and relative efficiency of different solutions.

Programming and Algorithms within the Computing Curriculum

Table 6: Key skills and concepts at key stage 4.

Curriculum units Proportion of content at each level Key concepts and skills

GCSE: Algorithms part 1

Define the terms
‘decomposition’,
‘abstraction’, and
‘algorithmic thinking’. Use
trace tables.

● Representations – use flowcharts to represent algorithms
● Testing – use trace tables to walk-through an algorithm and locate

errors

GCSE: Algorithms part 2

Describe a linear and
binary search. Explain the
key algorithms for a
bubble, merge, and
insertion sort.

● Sequence – describe the steps involved in common searching and
sorting algorithms

● Data structures – traverse and manipulate a list, inserting and removing
elements

● Design – implement common searching and sorting algorithms in code
● Evaluation – factors that affect the efficiency of searching and sorting

algorithms

GCSE: Programming part
1 – Sequence

Determine the need for
translators. Use
sequences, variables, and
inputs. Design programs
with flowcharts.

● Sequence – describe how sequences of instructions are translated
from high-level to low-level languages

● Variables – demonstrate how to declare, initialise, assign, and cast
variables of different data types

● Testing – characterise different types of errors and strategies to avoid
them

● Design – use a flowchart to design a program before implementing it

Programming and Algorithms within the Computing Curriculum

GCSE: Programming part
2 – Selection

Use randomisation in
programs. Work with
arithmetic and logical
expressions. Use
selection and nested
selection in Python.

● Decomposition/sequence – integrate external modules or third party
code

● Operators – incorporate additional arithmetic operators (floor division,
modulo, powers) into expressions

● Selection – interpreting code that contains nested selection
● Design – represent selection using standard flowchart symbols

GCSE: Programming part
3 – Iteration

Use a while loop and a
for loop in Python.
Perform validation
checks on data entry.
Design programs using
pseudocode.

● Iteration – application of condition-controlled loops in validation
routines

● Design – use pseudocode to design a program before implementing it

GCSE: Programming part
4 – Subroutines

Use functions and
procedures as part of the
structured approach to
programming. Describe
scope of variables. Test a
program for robustness.

● Subroutine – use parameters and return within subroutines
● Variables – compare the use and scope of local and global variables
● Operators – describe the function and logic of the XOR operator before

implementing in code
● Design – summarise and apply the structured approach to

programming, breaking a large problem in many smaller subroutines
● Testing – describe the role of iterative testing and types of testing

involved (erroneous, boundary, normal)

Programming and Algorithms within the Computing Curriculum

GCSE: Programming part
5 – Strings and lists

Perform string handling
operations. Describe the
differences between a list
and an array. Manipulate
a list. Work with 2D lists.

● Data structures – describe and make use of lists (including 2D lists)
and their associated methods within programs

● Operators – apply common string operations within code, including
concatenation, substringing, and slicing

● Subroutine – use a data structure such as a list as a return value from a
function

GCSE: Programming part
6 – Dictionaries and
datafiles

Use a record and a
dictionary data structure.
Access and modify
external data files.
Complete a complex
programming project.

● Data structures – describe a record data structure and implement it
using dictionaries and lists

● I/O – build code that reads, writes, and appends structured data to and
from external files

● Design – analyse a task and design a solution using flowcharts and/or
pseudocode

● Testing – carry out testing of a program built for a specific task
● Evaluation – judge the success of a program against a specification

and user needs

Optional: Physical
computing project

● I/O – build programs that use a text-based language to sense the
environment and move something in the physical world

● Design – apply physical computing principles to solve a problem
● Variables – process and use data provided by a physical sensor to

make decisions

Programming and Algorithms within the Computing Curriculum

Optional: Object-oriented
programming

Apply the principles of
object-oriented
programming. Create a
class and use its
attributes and methods.

● Data structures – explain the relationship between objects and how
they can be seen as custom data structures

● Decomposition – compare subroutines and variables with methods and
parameters, respectively

● Variables – relate variables and their scope to object parameters

Programming and Algorithms within the Computing Curriculum

A level computer science

The theory and practice of programming are a major part of A level qualifications in
computer science. Students will both expand and deepen their knowledge of programming,
algorithms, and software development practices.

At this stage, they will learn to represent algorithms, programs, machine states, and logic in
new ways, including finite state machines, regular expressions, pseudocode, and structured
English. They will also look beyond common searching and sorting algorithms to explore
approaches to path finding and graph traversal. Alongside their understanding of how
different algorithms work, students will also explore complexity within algorithms and how
we measure and compare it.

For most students, this stage will be the first time they encounter the concept and practical
application of recursion within programs. A level students will also explore additional
programming paradigms such as functional programming and take an in-depth look at
object-oriented programming. Alongside these high-level programming experiences,
students will also spend more time tracing and writing simple programs in assembly
language.

Students will expand their understanding of data structures, going beyond variables, lists,
and dictionaries to explore more abstract structures and how they can be implemented in
code. Graphs, hash tables, linked lists, and trees are just some of the structures that
students will study in terms of their structure, use, and application.

The final significant area is that of software development, in which students explore all
aspects of a software development lifecycle. They will construct detailed plans and success
criteria before developing software, which is thoroughly tested. Students will adopt a holistic
approach to evaluate a solution, considering its functionality, usability, robustness, and more.

Programming and Algorithms within the Computing Curriculum

Table 7: Key skills and concepts within A level computer science.

Isaac Computer Science strand Proportion of content at each level Key concepts and skills

Data structures and algorithms ● Design – explain the importance of considering and measuring
complexity of algorithms and the application of heuristics

● Data structures – apply a range of data structures, including
graphs, hash tables, linked lists, queues, stacks, trees, and
vectors to solve common problems including search, sorting,
and pathfinding algorithms

Theory of computation ● Decomposition – apply decomposition techniques, including
problem reduction, and divide and conquer methods; describe
a range of abstraction techniques that can be applied to a
problem or scenario

● Representation – make use of finite state machines, state
transition diagrams, regular expressions, and Turing machines
to represent aspects of computation

Programming paradigms ● Sequence – describe and compare sequential and
non-sequential programming approaches, including procedural,
event-driven, functional, and object-oriented programming

● Decomposition – apply each programming paradigm to
scenarios, breaking down the task using events, subroutines,
functions, or objects

Programming and Algorithms within the Computing Curriculum

Programming fundamentals ● Iteration – apply nested iteration to solve problems
● Subroutines – apply recursive techniques and describe how

stack frames are created during subroutine execution
● Testing – explore a wide range of testing techniques and

understand common errors introduced by new paradigms and
techniques

● I/O – make use of binary files within programs

Computer systems ● Sequence – distinguish between high- and low-level languages
and understand how programs are translated between them

● I/O – compare machine code, assembly language, and
different instruction sets as well as build programs in low-level
languages

Software engineering ● Design – compare different approaches to software
development including the stages involved, methodologies,
and tools; research a scenario to capture all of its requirements

● Decomposition – identify the reusable program components
during design

● Representation – use a combination of structure charts, class
diagrams, flowcharts, and pseudocode to represent aspects of
the designed solution

● Testing – generate test plans and apply debugging to build a
robust solution

Programming and Algorithms within the Computing Curriculum

3.5. Progression across key stages
After exploring the focus and progression within each key stage, it becomes possible to step
back further and examine progression between stages. To capture this broad progression
across the domain of programming and algorithms, it has been divided into two areas.

Figure 2 provides a summary of the programming constructs and patterns that learners
encounter as they progress through the Teach Computing Curriculum. Each box represents a
progressive step relating to one or more programming constructs (sequencing, selection,
iteration, variables, and data structures) and is positioned according to where that step is
explicitly taught. For example, whilst learners will likely encounter nested selection
statements during key stage 2, they aren’t formally taught how to apply them effectively until
key stage 4.

The wider skills that learners need and develop whilst learning to program are captured in
Figure 3 and divided into five broad categories. Whilst there are clearly some
interconnections between the categories and skills, for simplicity and clarity these aren’t
shown. Many of these skills are developed over a period of time across multiple contexts,
projects, and programming languages and hence span multiple key stages.

Programming and Algorithms within the Computing Curriculum

Figure 2: Programming constructs and patterns encountered throughout the Teach Computing Curriculum.

Programming and Algorithms within the Computing Curriculum

Figure 3: Wider skills required by students of programming.

Programming and Algorithms within the Computing Curriculum

4. Pedagogical strategies for programming and
algorithms

4.1. Pedagogy principles
The work of the National Centre for Computing Education is underpinned by 12 pedagogical
principles that can be exemplified by a range of evidence, informed practices, and strategies.
These principles apply across the teaching of computing; however, some are more
applicable than others in each strand of the curriculum.

Figure 4: NCCE’s 12 pedagogy principles.

Programming and Algorithms within the Computing Curriculum

Programming and algorithms and how to teach these concepts have been an area of focus
within the body of computing education research for some time. Whilst historically much of
this research is based on studies within higher education settings, there are many
approaches and practices that are thought to be effective based on the available evidence.
Many of these individual approaches, ideas, and pedagogies can be explored in detail from a
number of sources:

● The NCCE’s collection of Pedagogy Quick Reads provides short digestible summaries
on a range of topics10

● Hello World’s Big Book of Computing Pedagogy provides similar summaries along
with teacher stories and wider research insight11

● A comprehensive review of programming pedagogies can be found in a recent report
from the Raspberry Pi Foundation12

Here, we present the most relevant of our 12 pedagogical principles for programming and
algorithms as well as some illustration of what they look like in practice.

Lead with concepts
Programming and algorithms is an area of computing where it is crucial to distinguish
between the concepts being studied and the context, programming language, and tools
being used. Throughout their journey with the Teach Computing Curriculum, pupils will
encounter a range of programming languages and tools. By building their confidence and
understanding of the fundamental programming constructs, students will likely be more
readily able to transfer this knowledge to new languages.

● Language and vocabulary (and its underlying meaning) are really important, from
how correctly and consistently we use key terms to how we describe the focus of the
learning.

● Using tools such as displays, concept maps , wikis, posters, etc. helps to develop a13

shared understanding amongst pupils of key concepts and consistent terms to label
them.

● We should avoid conflating the learning of specific programming concepts and
constructs with the specific languages or tools being used. Pupils aren’t learning
Scratch or Python, but instead learning to apply their programming skills to those
languages.

● To support pupils in developing and transferring their conceptual understanding
between languages, we should avoid (at least at first) some of the many short cuts or

13 Raspberry Pi Foundation. Quick Read: Using concept maps to capture, communicate, construct, and assess
knowledge. National Centre for Computing Education. 2020.
https://blog.teachcomputing.org/using-concept-maps-to-capture-communicate-construct-and-assess-knowledge
/

12 Waite, J, & Sentance, S. Teaching programming in school: A review of approaches and strategies. Raspberry Pi
Foundation. 2021.
https://www.raspberrypi.org/app/uploads/2021/11/Teaching-programming-in-schools-pedagogy-review-Raspber
ry-Pi-Foundation.pdf

11 Hello World. Big Book of Computing Pedagogy. Cambridge: Raspberry Pi Foundation. 2021.

10 National Centre for Computing Education. Quick Reads. https://blog.teachcomputing.org/tag/quickread/
[Accessed 27 January 2022]

https://blog.teachcomputing.org/using-concept-maps-to-capture-communicate-construct-and-assess-knowledge/
https://blog.teachcomputing.org/using-concept-maps-to-capture-communicate-construct-and-assess-knowledge/
https://www.raspberrypi.org/app/uploads/2021/11/Teaching-programming-in-schools-pedagogy-review-Raspberry-Pi-Foundation.pdf
https://www.raspberrypi.org/app/uploads/2021/11/Teaching-programming-in-schools-pedagogy-review-Raspberry-Pi-Foundation.pdf
https://blog.teachcomputing.org/tag/quickread/

Programming and Algorithms within the Computing Curriculum

idiosyncrasies provided by different languages. A good example of this is the
standard print function in Python, which allows programmers to concatenate multiple
values by supplying each as a parameter, or the forever if block, which exists in
several block-based languages. Both examples hide some underlying complexities
that aren’t found in other languages.

● In a similar manner, we risk overwhelming students when we as experts create
complex and compound lines of code that contain many concepts. Those same
concepts spread over several lines of code are easier to read, decode, and trace and
students can condense later (if they want) when their understanding is secure.

Model everything
As well as being a concept-rich part of the computing curriculum, programming and
developing algorithms also involves many new skills that educators need to model.

● Use worked examples to model chunks or programming patterns that learners can14

read, trace, adapt, or complete, gradually removing this scaffold over time.
● Model the process of programming through live coding , create programs live with15

and for your learners. Talk through your thoughts, the steps you are taking, and
mistakes you are making.

● Modelling good programming practices is essential to help learners avoid forming
bad habits, which may lead to misconceptions and ultimately hinder future learning.
Some particular practices to be aware of are:

○ Always model the use of appropriate names for variables, functions, objects,
etc.

○ Avoid having too many concepts or steps embedded within a single line of
code; this makes them less readable and harder to debug.

○ Infinite loops are best avoided where possible as they provide no condition
under which they will terminate short of terminating the whole program. Using
a conditional loop ensures the loop can always gracefully exit and also
provides clarity to anyone reading the code.

● Model to learners the choice of language, tool, and programming paradigm, and how
to select the most appropriate of each. As learners progress, they experience new
(and potentially more complex) tools and languages. However, each new tool or
language isn’t inherently better but instead compliments their existing tools for
solving programming problems.

15 Raspberry Pi Foundation. Quick Read: Using live coding to bring coding to life. National Centre for Computing
Education. 2020. https://blog.teachcomputing.org/quick-read-5-live-coding/

14 Raspberry Pi Foundation. Quick Read: Using worked examples to support novice learners. National Centre for
Computing Education. 2019.
https://blog.teachcomputing.org/using-worked-examples-to-support-novice-learners/

https://blog.teachcomputing.org/quick-read-5-live-coding/
https://blog.teachcomputing.org/using-worked-examples-to-support-novice-learners/

Programming and Algorithms within the Computing Curriculum

Make concrete
Bring abstract concepts to life with real-world, contextual examples and a focus on
interdependencies with other curriculum subjects.

● Talk about the programs and algorithms that surround your learners, particularly at
home and school, but also present in their everyday lives.

● Where possible, adapt activities provided in the Teach Computing Curriculum to your
learners’ local community, experiences, cultural background . Use programs to solve16

problems that matter to them.

Unplug, unpack, repack
To teach new concepts, first unpack complex terms and ideas, then explore these ideas in
unplugged and familiar contexts, before you repack this new understanding into the original
concept.

To help, teachers can apply a semantic wave approach. In simple terms, this encourages17

educators to:
● Present learners with an abstract concept: “A variable is a named reference to a

space in memory, which a program can use to store, retrieve, and update data”.
● Unpack the meanings within the concept and relate it to a familiar concept: “A

variable is a little like a physical box with a name written on the side. It can store one
thing at a time and to use it we can either replace its contents with something new
(assignment) or examine, but not replace, the value it currently holds.”

● Explore the concept within this familiar analogous context, perhaps using physical
props to demonstrate how data is stored, retrieved, and updated.

● Repack the meanings of the original concept and draw similarities and differences
between the analogy and the original computing context: “Unlike physical boxes, our
variables can only store one item at a time. We use different types of variables to
store different types of data including numbers, text, or Boolean data.”

● Finally, return the original concept in its own context: “Variables are named
references to parts of a computer’s memory that a program can name and use to
store, retrieve, and update different types of data.”

17 Raspberry Pi Foundation. Quick Read: Using semantic waves to improve explanations and learning activities in
computing. National Centre for Computing Education. 2020.
https://blog.teachcomputing.org/quick-read-6-semantic-waves/

16 Raspberry Pi Foundation. Quick Read: Culturally relevant pedagogy. National Centre for Computing Education.
2021. https://blog.teachcomputing.org/quick-read-culturally-relevant-pedagogy/

https://blog.teachcomputing.org/quick-read-6-semantic-waves/
https://blog.teachcomputing.org/quick-read-culturally-relevant-pedagogy/

Programming and Algorithms within the Computing Curriculum

Challenge misconceptions
Regardless of how well a concept is taught, there is always space for alternate conceptions18

(commonly known as misconceptions) to develop. In fact, sometimes we may knowingly
introduce a misconception in order to simplify a concept or make it accessible. Recognising
those misconceptions and knowing how to mitigate them is important, especially in an area
of the curriculum that focuses on concepts.

● Teachers should make a conscious effort to seek out misconceptions and challenge
them. Using regular formative assessment can help uncover misconceptions.

● Carefully written multiple choice questions can be used diagnostically with19

distractors (wrong answers) that each result from a specific misconception.
● Concept mapping is another useful tool. If learners create their own maps, these

should be a reflection of their internal understanding and can help identify the root of
a misconception.

● Peer instruction is a particularly effective technique based on a flipped learning20

approach. Learners complete a task before the lesson, in which they ‘learn’ new
concepts. The lesson time is then used to answer diagnostic questions
collaboratively and relies on peer discussion to build consensus around a concept. It
not only helps identify misconceptions, but also helps address and correct them.

Create projects

Pupils need opportunities to apply the skills, knowledge, and understanding that they have
developed, and project-based activities can be a great way to facilitate this.21

● Projects give pupils a goal, an audience, and a brief to fulfil, for which they need to
make autonomous decisions about the skills, knowledge, and tools that they will use.

● Projects are a valuable context in which pupils can develop their design, analysis, and
evaluation skills, as well as providing opportunities for collaboration.

● Projects rooted in the learner’s experience and environment allow learners to solve
problems that matter to them, increasing their intrinsic motivation to learn.

● Projects help learners develop their skills and understanding beyond computing as
they involve them imagining, making, and sharing their ideas. Over the course of a
project, learners will have to practice planning, organise their tasks and time
available, and communicate their ideas and progress with stakeholders.

21 Raspberry Pi Foundation. Quick Read: Using project-based learning to apply programming knowledge to
real-world scenarios. National Centre for Computing Education. 2021.
https://blog.teachcomputing.org/project-based-learning/

20 Raspberry Pi Foundation. Quick Read: Using peer instruction to discuss computing concepts. National Centre for
Computing Education. 2019. https://blog.teachcomputing.org/quick-read-4-peer-instruction/

19 Eedi. Teach Computing NCCE. https://eedi.com/projects/teach-computing [Accessed 21 June 2021]

18 Raspberry Pi Foundation. Quick Read: Addressing learners’ alternate conceptions in computing. National Centre
for Computing Education. 2022.

https://blog.teachcomputing.org/project-based-learning/
https://blog.teachcomputing.org/quick-read-4-peer-instruction/
https://eedi.com/projects/teach-computing

Programming and Algorithms within the Computing Curriculum

Structure lessons

Like in any other subject, computing lessons benefit from structure, planning, and a
well-thought-out learning journey. There are several frameworks that educators can use to
help them structure their programming lessons.

● For example, before asking students to create something new, you might ask them
first to use an existing example and modify that example before they create their
own. This is the Use–Modify–Create framework and it can be really helpful in
supporting learners to move from the examples of experts to building something that
they understand and own themselves.

● A well-evidenced and popular framework that has been developed over the last few
years is PRIMM . PRIMM stands for Predict, Run, Investigate, Modify, and Make,22

representing the different stages of a lesson or series of lessons.
● Structuring lessons using such frameworks ensures that differentiation can be built

in at various stages of the lesson. It ensures that cognitive load is managed and that
students are supported, engaged, and challenged at the right moments.

Work together

Collaboration is crucial: not only is it highly prevalent in modern computing professions, but
it is also a valuable way for individual pupils to learn from their peers.

● Working together stimulates classroom dialogue, articulation of concepts, and the
development of shared understanding.

● Pair programming is a really effective approach to programming, where pupils share23

the cognitive load placed upon them. Research demonstrates that this approach will
support learners in developing their programming confidence and attainment.

Read and explore code

There is no doubt that programming can be a highly rewarding, highly satisfying experience
for all. However, you should be in no rush to have your students write their first independent
program; in doing so, you may miss out some important steps.

We typically wouldn’t ask pupils to write before they had learnt the basics of reading, or
encourage them to write number sentences before they could count. Likewise, there is a
body of evidence that suggests that pupils who engage in reading code before they write
code can enhance and improve their ability to write better code later on.

Research suggests that educators should be encouraging their pupils to engage with other
people’s code prior to writing their own. They should review it, interpret it, understand it, and
manipulate it. This approach applies to all sorts of programming experiences, whether they
are text-based (for example, Python) or block-based (for example, Scratch).

23 Raspberry Pi Foundation. Quick Read: Using pair programming to support learners. National Centre for
Computing Education. 2019. https://blog.teachcomputing.org/quick-read-pair-programming-supports-learners/

22 Raspberry Pi Foundation. Quick Read: Using PRIMM to structure programming lessons. National Centre for
Computing Education. 2020. https://blog.teachcomputing.org/using-primm-to-structure-programming-lessons/

https://blog.teachcomputing.org/quick-read-pair-programming-supports-learners/
https://blog.teachcomputing.org/using-primm-to-structure-programming-lessons/

Programming and Algorithms within the Computing Curriculum

Get hands on

Physical computing and making activities are shown to be highly engaging approaches for24

learners, giving them a sensory, tactile, and creative experience in which they can combine
computing with art, craft, and design. Physical computing is both a tool to engage learners
and a strategy to help them develop their understanding in more creative ways.

Through physical computing, learners can encounter, develop, and practise the whole range
of programming skills and concepts, including sequences, loops, conditions, functions, and
data structures. Alongside applying these concepts, learners will also encounter other
languages, models of programming, and novel computer systems.

Foster program comprehension

When teaching programming, it is important for learners to understand a program from
multiple perspectives, including how it is written (syntax and symbols) and how it executes,
as well as its function or purpose.

There are many ways in which you might support program comprehension , but particular25

examples include activities that promote debugging, tracing, and the use of Parson’s
Problems. Additionally, tasks that ask pupils to consider the purpose of a program (or a
small part of a program) are very helpful. Other beneficial tasks include selecting appropriate
names for variables, functions, or entire programs; predicting the output of a program; or
matching programs to their purpose.

25 Raspberry Pi Foundation. Quick Read: Improving program comprehension through Parson’s Problems. National
Centre for Computing Education. 2021.
https://blog.teachcomputing.org/quick-read-improving-program-comprehension-throughparsons-problems/

24 Raspberry Pi Foundation. Quick Read: Physical computing. National Centre for Computing Education. 2021.
https://blog.teachcomputing.org/quick-read-physical-computing/

https://blog.teachcomputing.org/quick-read-improving-program-comprehension-throughparsons-problems/
https://blog.teachcomputing.org/quick-read-physical-computing/

Programming and Algorithms within the Computing Curriculum

5. Professional development for computing teachers
A core part of the NCCE’s role is to help teachers develop their subject knowledge and
pedagogy through continued professional development (CPD). There are a number of routes
for teachers to participate in CPD to support their understanding of programming and
algorithms.

Table 8 provides a sample of some of the courses that are available as part of the NCCE;
these are designed to support teachers’ development of their programming and algorithms
subject knowledge. Many more courses, both online and face-to-face can be found on the
Teach Computing website .26

Teachers of A level computer science can find an additional range of bespoke courses27

organised by Isaac Computer Science on a range of relevant topics.

Table 8: Courses to support teachers’ development of programming and algorithms
knowledge.

Key stage 1 Key stage 2 Key stage 3 Key stage 4 Key stage 5

Teaching key stage
1 computing

Teaching key stage
2 computing

Programming 101: An introduction to
Python for educators

Object-oriented
programming

Primary programming and algorithms Programming pedagogy in secondary
schools: Inspiring computing teaching

Programming a
relational database

using SQL

Programming pedagogy in primary
schools: Developing computing teaching

Scratch to Python:
Moving from block-

to text-based
programming

An introduction to
algorithms,

programming, and
data in GCSE

computer science

Dijkstra's algorithm
and A*

Physical computing
– KS2 (Crumble)

Physical computing
– KS3 (micro:bit)

Physical computing
– KS4 Raspberry Pi

Pico
Assembly language

Beyond accessing formal courses, there are many opportunities for computing teachers to
learn through networks, such as Computing at Schools (CAS). These local communities
continue to meet regularly and share best practices and skills and are therefore a great
source of inspiration and development for teachers. As well as local support and meetups,
teachers can find many CPD focused events .28

28 Computing at School. Upcoming events. https://community.computingatschool.org.uk/events [Accessed 21
June 2021]

27 Isaac Computer Science. Events. https://isaaccomputerscience.org/events [Accessed 21 June 2021]

26 Teach Computing. Computing courses for teachers. https://teachcomputing.org/courses [Accessed 21 June
2021]

https://teachcomputing.org/courses
https://isaaccomputerscience.org/events
https://community.computingatschool.org.uk/events
https://community.computingatschool.org.uk/events
https://isaaccomputerscience.org/events
https://teachcomputing.org/courses

Programming and Algorithms within the Computing Curriculum

6. Conclusion
In this report, we explored programming and algorithms as a fundamental component of
computing education. Developing knowledge and skills in this area enables learners to
create, solve problems, and express ideas using computing devices. Regardless of their
future aspirations, study, and careers, a firm understanding of the essentials of programming
and algorithms equips students with a versatile skill for the future.

In reflecting on this area of the computing curriculum, we have used the Levels of
Abstraction (LOA) framework to describe four key themes within programming and argued
that an understanding of each level and the ability to move between them is a key factor in
learners developing as programmers; these themes are a key part of the design principle
behind the Teach Computing Curriculum (TCC). Alongside promoting understanding and
movement between these levels, the Teach Computing Curriculum explores programming
through a range of contexts, supporting learners in collecting and recalling common
programming patterns, and gradually increasing their ownership over programming tasks
and projects.

We have reviewed all 34 Teach Computing units and Isaac Computer Science topics, to
provide an overarching view that highlights their position and focus within the levels of
abstraction framework along with the key concepts and skills studied. From this, we can
demonstrate varied coverage of the four levels of abstraction, with most units having a
component of each of the four levels, whilst others (particularly at higher key stages) have a
deeper focus on one or more particular levels compared with the others.

This same review has allowed us to uncover the high-level steps in progression present in
the Teach Computing Curriculum and therefore the national curriculum it covers. This
progression has been captured as two learning graph style diagrams showing the
progression of programming constructs and the skills that sit alongside.

We hope you find this report useful and welcome feedback on it, via
research@teachcomputing.org. In addition to this Programming and Algorithms report and
our previous reports on Computer Systems and Networking and Digital Literacy within the
Computing Curriculum, we plan to publish similar reports on other topic areas within the
computing curriculum in due course.

This resource is licensed under the Open Government Licence, version 3. For more information on this licence,
see ncce.io/ogl.

https://static.teachcomputing.org/Computer_Systems_%26_Networking_Report_-_Final.pdf?_ga=2.253716297.1584112708.1643285075-1063864679.1621248704
https://blog.teachcomputing.org/digital-literacy-within-the-computing-curriculum/
https://blog.teachcomputing.org/digital-literacy-within-the-computing-curriculum/
http://ncce.io/ogl

