
You may not be able to go through all stages in one lesson and may even
focus on one stage more than another. Remembering PRIMM gives you a
way of labelling what you are doing when you are teaching programming.

The PRIMM approach builds and draws on other research in computing
education, including Use-Modify-Create2, tracing and reading code before
writing3, the Abstraction Transition Taxonomy4, and the Block Model5. The focus on language and talk, and the use of starter
programs, draws on a sociocultural perspective to the way that children learn programming.

Predict: Students discuss a program and predict what it might do; they
can draw or write out what they think will be the output. At this level,
the focus is on the function of the code.

Run: Students run the program so that they can test their prediction
and discuss in class.

Investigate: The teacher provides a range of activities to explore
the structure of the code, such as tracing, explaining, annotating,
debugging, etc.

Modify: Students edit the program to change its functionality via a
sequence of increasingly more challenging exercises; the transfer of
ownership moves from the code being ‘not mine’ to ‘partly mine’ as
students gain confidence by extending the function of the code.

Make: Students design a new program that uses the same structures,
but solves a new problem (ie has a new function).

Summary
PRIMM is an approach that can help teachers
structure lessons in programming. PRIMM
stands for Predict, Run, Investigate, Modify and
Make, representing different stages of a lesson,
or series of lessons. PRIMM promotes
discussion between learners about how
programs work, and the use of starter programs
to encourage the reading of code before writing.

PRIMM is a way of structuring programming
lessons that focuses on:

• Reading code before you write code
• Working collaboratively to talk about

programs
• Reducing cognitive load by unpacking and

understanding what program code is doing
• Gradually taking ownership of programs

when ready

The five stages:

Predict
• Focus on the function of the code
• Encourage discussion
• Work in pairs or threes

Run
• Provide students with working code to run
• Check against prediction

Investigate
• Use a variety of activities, for example,

tracing, annotating, questioning, etc
• Encourage students to discuss and work

in pairs or small groups with the code

Modify
• Modify code in small steps to add new

functionality
• Apply what has been learnt about the

structure of the code
• Gradual increase in difficulty

Make
• Create a new program
• Practise the programming skills that have

been learnt
• Can be a design or an open task

Does it work?
- A study in 2018 with 500 learners aged

11–14 showed improved learning outcomes
after 8–12 weeks of programming lessons
using PRIMM1

- PRIMM has been put into practice by many
teachers in primary and secondary schools
around the world

Pedagogy Quick Reads
Using PRIMM to structure

programming lessons

Lesson
structure

Language/
talk

Planning a lesson using PRIMM
Predict-Run-Investigate-Modify-Make

Content/
questions

Shared
artefacts

• PRIMM fosters
structure

• Routine becomes
familiar

• Educators adapt
to students’ needs

• Each step can
be further
differentiated

• Carefully selected
questions help
students explore
the program

• Should be within
student’s ZPD
(zone of proximal
development)

• Teacher is key in
making content
relevant

• Programs first
shared with
learner (‘not mine’)

• Giving students a
program to run
(not copy) reduces
anxiety

• Gradually student
takes ownership
(‘mine’)

• Students practise
using appropriate
programming
terms

• Misconceptions
can be articulated
and explored

• Collaborative
work is a key
element of
PRIMM

The five stages of PRIMM

http://ncce.io/qr04_1
http://ncce.io/qr04_2
http://ncce.io/qr11_1
http://ncce.io/qr11_2

References
1 Sentance, S., Waite, J., & Kallia, M. (2019) Teaching computer programming with PRIMM: a sociocultural perspective. Computer Science Education. 29 (2–3), 136–176.

DOI: 10.1080/08993408.2019.1608781.

2 Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J. & Werner, L. (2011) Computational thinking for youth in practice. ACM Inroads. 2(1), 32–37.

3 Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R., Moström, J. E., Sanders, K., Seppälä, O., Simon, B. & Thomas, L. (2004)
A multi-national study of reading and tracing skills in novice programmers. ACM SIGCSE Bulletin. 36(4), 119–150.

4 Cutts, Q., Esper, S., Fecho, M., Foster, S. R. & Simon, B. (2012) The Abstraction Transition Taxonomy: Developing desired learning outcomes through the lens of situated
cognition. In: Proceedings of the Ninth Annual International Conference on International Computing Education Research. New York, ACM. pp. 63–70.

5 Schulte, C. (2008) Block Model: An Educational Model of Program Comprehension as a Tool for a Scholarly Approach to Teaching. In: Proceedings of the Fourth
International Workshop on Computing Education Research. New York, ACM. pp. 149–160.

6 Venables, A., Tan, G. & Lister, R. (2009) A closer look at tracing, explaining and code writing skills in the novice programmer. In: Proceedings of the Fifth International
Workshop on Computing Education Research. New York, ACM. pp. 117–128.

7 Walqui, A. (2006) Scaffolding instruction for English language learners: A conceptual framework. International Journal of Bilingual Education and Bilingualism. 9(2), 159–180.

Read before you write
The first activity in a PRIMM-like
lesson involves predicting what a
small segment of code will do when it
runs. It doesn’t require stating how it
will do that, just the outcome. This
shouldn’t be an assessed exercise, so
that all children are encouraged to
have a go, and it’s important that it is
low stakes. Sometimes the output can
be drawn, sometimes the teacher will
provide some sample inputs, all
depending on what kind of code it is.

This aspect of PRIMM builds on decades
of research that has shown that reading
code before writing it is an effective way
to learn programming. For example, work
by Lister and colleagues over many years
highlighted the importance of reading
code and being able to trace what it
does before writing new code.
Comparing tracing skills to code writing,
they demonstrated that novices require
a 50% tracing code accuracy before

Drawing on sociocultural theory
Social constructivism, in particular the work of the
psychologist Vygotsky, can frame our understanding of
novice programmers and their learning. This interpretation
of the learning process can help us to develop effective
pedagogical strategies.

Vygotsky proposed that mediated activity promotes higher
mental processes, and identified three major forms of
mediation: material tools, psychological tools (including

language), and interaction with other human beings.
Mediation allows learners to act as apprentices before
internalising new ideas, and sociocultural theory (SCT)
suggests that movement from the ‘social plane’ to the
‘cognitive plane’ supports the learning of skills and
knowledge7. With the PRIMM approach, the ‘starter
programs’ that are shared and discussed can be seen as
being on the social plane, with a mediated progression to
the cognitive plane once understood and internalised1.

Not starting from scratch
It can be very stressful for novice programmers to write code
into a blank editor window. The syntax needs to be right, or quite
intimidating error messages can appear. It’s easy to be put off
having a go, or for teachers to resort to getting students to copy
code that they don't yet understand. By running a program that
the teacher has written, the learner doesn’t have ownership of

that ‘starter’ program and does not have the emotional angst
when it doesn’t work. That’s why in PRIMM, the Run stage
involves running a program provided on a shared drive to check
the prediction. Gradually, once the student has some
understanding of how the code works, they can modify the
code and take ownership of the new functionality.

Encouraging talk in the classroom
Classroom discussion is an important aspect of the teaching of
many subjects, but isn't often referred to with respect to the
teaching of programming. Many PRIMM activities are carried
out in pairs, and we already know that pair programming is an
effective form of learning, and involves learners practising to
articulate what to do when writing a program. PRIMM goes a
step further and encourages Predict and Investigate activities
to be carried out in pairs/small groups, away from the
computer. This has the following benefits:

• Talking about a program and how it works helps learners
to find the right terminology to use to articulate their
understanding. Having a common language to talk about
programming constructs is important.

• Actually verbalising out loud the steps of a program that
are difficult to understand can help learners to focus on
atomic or smaller elements at a time.

• Through dialogue with others, we can ask and answer
questions, and learn from others.

from turtle import *
def square ():
 for counter in range (4):
 forward(100)
 right(90)

square()
left(45)
square()

they can independently write code
with confidence6.

http://ncce.io/qr11_3
http://ncce.io/qr11_4
http://ncce.io/qr11_5
http://ncce.io/qr11_6
http://ncce.io/qr11_7
http://ncce.io/qr11_8
http://ncce.io/qr11_9

