
Although programming is a valuable and rewarding skill to learn, many learners find the process challenging:

• Even simple programs are rich in concepts that can cause cognitive overload in learners

• Learners may rush to write programs too soon, before they have read and understood the relevant concepts

• Programs often don’t work first time, requiring resilience and persistence from learners

• Learners need to switch between different abstractions, the problem, the program text, and its execution, constantly moving
from single lines to the program as a whole

• Learners also need a mental model or notional machine for how the computer works and will execute the program

These challenges do not mean that programming is intrinsically difficult, and recognition of these challenges can help educators 
identify where they can support their learners.

Summary
In recent years, program comprehension has been recognised as an 
important step in learning to program. It is a step that is easily missed as 
learners dive straight into writing programs before they have learnt to 
read them. What exactly is program comprehension, why is it so 
important, and how can educators develop these skills with their 
learners?

Learning programming has several challenges:
• It is concept-rich, leading to cognitive

overload
• It balances comprehension with coding

experience
• It demands persistence and resilience
• Learners need a secure mental model of

computation

Program comprehension
• It allows learners to interpret, explain, adapt,

debug, and create programs
• It supports learners to develop programming

patterns or plans
• It can be divided into 12 ‘zones’ using the 

Block Model
• Learners should develop knowledge in each 

zone and be able to move between them

Comprehension tasks
• Educators can use this Block Model to

categorise tasks and identify gaps where
students need support

• A range of strategies already exist that have
been mapped to the Block Model

Pedagogy Quick Reads
Understanding program comprehension 

using the Block Model

Why do students find programming challenging?

Experienced programmers demonstrate a high degree of program comprehension. As well as having a robust notional 
machine, they can develop programming ‘plans’ (chunks of code that perform a specific task), based on common features in 
programs that they have seen. They can then use these plans or patterns to interpret, explain, adapt, debug, and create 
programs. 

Novice programmers know of very few (if any) programming plans, and have limited awareness of how programs are executed 
(notional machine). Their focus may be limited to decoding individual words in a program, rather than comprehending their 
meaning or the meaning of the wider program. As educators we need to understand how to bridge this gap.

Program comprehension

• Annotate code or 
draw a diagram to 
show the overall 
structure

• Restructure an 
‘untidy’ program

• Identify inputs 
needed to test all 
program branches

• Will line X ever be 
executed?

• Choose a name for 
a given program

• Select/write a 
sentence that 
describes a 
program’s purpose

• Identify variable 
scope 

• Highlight function 
calls

• Draw the flow of 
control

• Find redundant 
conditional 
branches

• Choose a name for 
a variable/function

• Are two 
programs/segments 
functionally 
equivalent?

• Identify statement 
types, such as 
assignments and 
conditions

• Trace values 
through a program

• Explain the purpose 
of a single line

Text surface (T) Program execution (P) Function/purpose (F)

• Identify block 
types, such as 
finite loops, ‘else’ 
conditions, 
function 
definitions, etc

• Reordering lines of 
code

• Parson’s Problems

• Explain the purpose 
of a block of code

Macro 
structure (M)

Relationships (R)

Blocks (B)

Atoms (A)

http://ncce.io/qr12_1
http://ncce.io/qr12_2


References
1 Izu, C., Schulte, C., Aggarwal, A., Cutts, Q., Duran, R., Gutica, M., Heinemann, B., Kraemer, E., Lonati, V., Mirolo, C. & Weeda, R. (2019) Program comprehension: 

Identifying learning trajectories for novice programmers. In: ITiCSE '19: Proceedings of the 2019 ACM Conference on Innovation and Technology in Computer Science 

Education. New York, ACM. pp. 261–262.

2 Schulte, C., Clear, T., Taherkhani, A., Busjahn, T. & Paterson, J. H. (2010) An introduction to program comprehension for computer science educators. In: Clear, A. & 

Russell Dag, L. (eds.) ITiCSE-WGR '10: Proceedings of the 2010 ITiCSE working group reports. New York, ACM. pp. 65–86.

3 Clear, T. (2012) The hermeneutics of program comprehension: a 'holey quilt' theory. ACM Inroads. 3(2), 6–7.

4 Sentance, S. (2020) The I in PRIMM. Hello World. 14, 50–53.

The Block Model
A useful tool for understanding and 
categorising aspects of program 
comprehension is the Block Model. 
This framework captures what level 
the learner is focused on:

• Atoms, the smallest element, are     
   the keywords, symbols, and syntax,
   or a single line of code.

• Blocks are small chunks of code that 
perform a task, eg single lines, loops, 
selection statements, or functions.

• Relationships are the connections 
between blocks, and the manner in 
which they work together, such as 
function calls and return values.

• Macro structure refers to the program 
as a whole.

The framework also considers the 
‘dimension’ of the program, or how the 
learner is viewing it:

• The program exists as a static piece of   
   text. This is called the text surface and
   is where learners need to consider the
   grammar and syntax of their program.

• When the program is executed, it
   becomes a dynamic object that may
   behave differently depending on its
   inputs. This dimension is known as the
   program execution. 

Mapping tasks to the Block Model
It is important to devise activities that develop 
comprehension in each of these 12 zones, in order to 
support learners’ full understanding of the program. By 
considering each of the three dimensions in turn, we can 
identify tasks that may foster comprehension at each level of 
focus.

Comprehending the text surface can be tricky, as learners 
need to discern the meaning from text with unfamiliar terms, 
structures, and syntax. Without support, they may get stuck 
focusing on the program at the ‘Atoms’ level. A simple 
strategy that works at all levels of focus is to identify aspects 
of the code within the text. By identifying examples of 
variables, conditions, finite loops, functions, etc, educators 
can help learners make sense of the text, and connect it to 
underlying concepts.

During program execution, several approaches could be used 
to help learners develop their understanding and their 
mental models. For example, learners could trace simple 
programs, determining the end state of variables or the 
inputs required to reach a specific state. Learners could also 
complete Parson’s Problems, which transcend the text 

surface and enable learners to focus on the correct sequence 
of instructions for a specified goal. Similarly, learners could 
investigate the effect of swapping two lines of code, or try to 
find lines that can never run. Note that many of these 
activities are also good examples of the ‘Investigate’ phase of 
the PRIMM methodology.

Learners can also benefit from exploring function. Asking 
learners to explain the function of a line, snippet, or entire 
program is a great place to start. To do this, they will have to 
use clues within the text and observe the execution. 
Educators can vary the degree of challenge by the clues they 
leave in the programs. Also, educators can connect function 
back to text by asking learners to provide meaningful names 
for variables, functions, or entire programs. Alternatively, 
learners could be given a description of the purpose and 
identify a program that matches, or compare multiple 
programs to find which are functionally equivalent.

There are lots of options for educators to choose from, but 
the most important step is to review our own practice, to 
find and fill those gaps in learners’ program comprehension.

Comprehension tasks

• The function solely concerns the
    purpose of the program or code
    snippet.

The Block Model therefore comprises 
12 zones of program comprehension 
that learners should be able to move 
between as they develop their 
understanding. The related ‘holey 
quilt’ theory   suggests that learners 
begin with varying levels of 
knowledge in each zone, ranging from 
fragile to deep. Knowledge is 
deepened over time and can be 
supported by learning activities 
targeting each zone.

There are already many great examples of activities that promote program comprehension, including tracing, Parson’s Problems, 
PRIMM, and tasks in which learners ‘explain the purpose’. A teacher-focused study    identified more than 60 different activities 
that could support learners in developing program comprehension skills. It also highlighted that many of these activities were 
already used, to assess program comprehension, rather than support its development.

As program comprehension is quite broad and there are a number of activities to choose from, it can be difficult for educators to 
know which activities to use in which circumstances.

4

3

2

1

Was this Pedagogy Quick Read useful? Share your thoughts and feedback at: ncce.io/pedagogyfeedback

http://ncce.io/qr12_3
http://ncce.io/qr12_4
http://ncce.io/qr12_5
http://ncce.io/qr12_6
ncce.io/pedagogyfeedback
http://ncce.io/qr12_2



