
A Parson’s Problem is a task in which learners are given all of the
blocks or lines of code needed to solve a problem, however, the lines
have been jumbled so that they are no longer in the correct order.
Learners are asked to reorganise the code into the correct order to
perform a specific task.

The short example above shows some jumbled lines of code (in Python and Scratch), and sets out the task that needs to be
completed. Why not see if you can solve the problems in the example?

Parson’s Problems can be applied to both text- and block-based programming and can vary in difficulty, to accommodate learners’
existing understanding. For example, when you feel that learners are ready, they could be provided with lines of code and be
expected to work out the indentation themselves (known as 2D Parson’s Problems).

There are many ways in which Parson’s Problems can be presented to learners. They make for an excellent offline or paper-based
activity that could be done individually, in pairs, or in small groups. You may choose to create problems directly in the
development environment to allow learners to immediately test their solutions. Alternatively, there are online tools such as
js-parsons that allow you to create your own interactive problems.

Parson’s Problems can be used to support formative assessment, as classroom discussion following the activity plays an
important part in learners’ development. Immediate feedback also avoids any misconceptions being committed to long-term
memory.

Summary
An important precursor to learning to write computer programs is
having the necessary program comprehension to interpret the function
and structure of existing programs. One tool that can help learners
develop program comprehension is Parson’s Problems, which are
exercises that require learners to rearrange lines of code into the
correct sequence.

Pedagogy Quick Reads
Improving program comprehension through

Parson’s Problems

What is a Parson’s Problem?

Parson’s Problems reduce the cognitive load

 Parson’s Problems support learners by:
• Developing learners’ understanding of how

 the program is executed (notional machine)
• Reducing cognitive load
• Focusing on blocks of code rather than

 syntax
• Providing all the correct code within an

 engaging challenge
• Promoting dialogue and discussion about

 code

Benefits of Parson’s Problems:
• Constrain the logic
• Avoid common syntax errors that can be

 barriers to learning to code
• Model good programming practices
• Provide the potential for immediate feedback
• Make it easier to identify common

 misconceptions
• Increase engagement of learners

Advice for writing Parson’s Problems:
• Share problems with only a single solution
• Allow learners to manipulate actual code

 blocks
• Provide a clear description of the problem
• Clearly show the desired logic
• Share multiple similar problems over time

Rearrange the lines or blocks of code below to create a program
that asks the user for their name, then for their favourite food,
before telling them that their food choice is a good choice.

print("Hi "+ name + ". What is your favourite food?")
print(food + " is a good choice " + name)
food = input()
name = input()
print("Please enter your name: ")

for learners, reducing the need to recall syntax;
instead, learners can focus on program structure
and logic in a way that is low-stakes and engaging.

Python

Scratch

http://ncce.io/qr13_1
http://ncce.io/qr13_2
http://ncce.io/qr13_3
http://ncce.io/qr13_4

References
1 Denny, P., Luxton-Reilly, A. & Simon, B. (2008) Evaluating a New Exam Question: Parsons Problems. In: ICER '08: Proceedings of the Fourth International Workshop

on Computing Education Research. New York, ACM. pp. 113–124.

2 Izu, C., Schulte, C., Aggarwal, A., Cutts, Q., Duran, R., Gutica, M., Heinemann, B., Kraemer, E., Lonati, V., Mirolo, C. & Weeda, R. (2019) Fostering Program

Comprehension in Novice Programmers - Learning Activities and Learning Trajectories. In: ITiCSE-WGR '19: Proceedings of the Working Group Reports on Innovation

and Technology in Computer Science Education. New York, ACM. pp. 27–52.

3 Harms, K. J., Chen, J. & Kelleher, C. L. (2016) Distractors in Parsons Problems Decrease Learning Efficiency for Young Novice Programmers. In: ICER '16: Proceedings

of the 2016 ACM Conference on International Computing Education Research. New York, ACM. pp. 241–250.

Distractors

The benefits of Parson’s Problems
The main benefit of Parson’s Problems is that the learner is focusing on the structure and logic of blocks of code, rather than the
syntax of individual text elements (atoms). The process reduces the cognitive load experienced by learners, allowing them to
practise sequencing and problem-solving with code. This experience is particularly helpful in the early stages of learning to
program, when learners may be easily frustrated and put off by repeated unsuccessful attempts to solve a problem. Parson’s
Problems also expose learners to logic and syntax that they may not be fully familiar with.

Denny et al. suggest that learners’ solutions to a Parson’s Problem “make clear what students don’t know (specifically in both
syntax and logic)”. These solutions can allow for an easier analysis of the common errors that learners make, whereas “the
open-ended nature of code-writing questions makes identifying such errors difficult”. For example, when using a Parson’s
Problem, we can be sure that an error was not caused by a typing mistake.

Parson’s Problems can promote some higher-order thinking in learners than simple code tracing (reading code and identifying its
purpose or output). Parson’s Problems can act as a stepping stone between the lowest and highest categories — being able to
read and interpret code and being able to write original code, which involves evaluation and creation (the highest categories in
Bloom’s).

Izu et al. place Parson’s Problems in the ‘Blocks’ row of the Block Model proposed by Schulte. They state that “novice
programmers should develop program comprehension skills as they learn to code so that they are able both to read and reason
about code created by others, and to reflect on their code when writing, debugging or extending it”. They also state that Parson’s
Problems support learners in developing their understanding of the notional machine.

Was this Pedagogy Quick Read useful? Share your thoughts and feedback at: ncce.io/pedagogyfeedback

Some Parson’s Problems include distractors. Distractors are incorrect blocks or lines of code that are
included in the set of provided code, meaning that learners need to be selective about which blocks
they use.

The inclusion of distractors can add an additional level of challenge for more confident learners. However, care should be
taken, as they may unnecessarily increase the cognitive load or the time spent on a task, or even result in a misconception or
error being committed to long-term memory.

Advice for writing Parson’s Problems
Provide learners with a clear
explanation of what the program
should do when correctly sequenced —
doing so reduces their cognitive load.
Additionally, Denny et al. recommend
making sure that there is a unique
answer for each question, ie there
should only be one order of the lines
that achieves the goal.

Ensure that learners manipulate the

actual lines of code, rather than using
letters or numbers as a shorthand.
Working with real lines of code helps to
develop their familiarity with the syntax
and the construction of the code.

In theory, it is possible for learners to
guess the correct answer to a simple
Parson’s Problem without fully
understanding the construct or logic
being tested. Asking more than one

question over time that tests the
same logic or construct can reduce
this concern.

Providing structure (eg braces, colons,
indentation) can make a question
more accessible, as learners can use
these visual clues to develop their
solution. Providing this structure can
also make problems including more
complex programming concepts
possible.

Rearrange the lines of code to
create a program that outputs the
total cost to the customer. Be aware
that there are two lines of code that
will cause errors in your program if
used.

price = 3.50
quantity = 5
total = price * Quantity
total = price * quantity
print(total)
print("total")

3

2

1

1

http://ncce.io/qr13_5
http://ncce.io/qr13_6
http://ncce.io/qr13_7
http://ncce.io/qr13_8
http://ncce.io/qr13_9
http://ncce.io/qr13_2
http://ncce.io/qr13_10

