
It is widely understood that young learners should ideally have developed some reading skills before they begin learning to write.
Similarly, in computing, there is a body of evidence to suggest that code tracing, a form of code reading, is an effective precursor
to code writing and independent programming.

When tracing code, learners review chunks of code, or whole programs, and record its expected behaviour and execution flow at
various stages. This can be captured through annotation as well as recording the program output at each stage. The Teach
Computing Curriculum ‘Programming’ units include examples of code tracing tasks. Learners may be asked to trace a piece of
code, predict the outcome, and then be guided through the code, line by line to test their prediction. Typically, prediction is done
away from the computer to ensure learners focus on reading rather than executing the code. Learners could also be given short
sections of code in the form of worked examples, or complete trace tables, where some values are provided and learners use
code tracing to record the missing values. With this secure understanding, learners can then be given the opportunity to create
their own program featuring the concepts they have traced. While there is no single approach to tracing, there are some clearly
defined methods such as TRACS which may be useful for learners to follow.

Here, we explore the benefits of code tracing, how it fits in with the concept of the notional machine, strategies to employ to
lighten cognitive load, and how code tracing can be used in the classroom.

Summary

Developed in the early 2000s, code tracing is a well-established approach to help learners develop their program comprehension.
Put simply, it involves reading and analysing code, before running it to predict its outcome. Novice programmers should be
competent in code tracing before they can confidently write programs of their own.

Pedagogy Quick Reads
Code tracing

What is code tracing?

Tracing involves:
• Reading the code
• Interpreting the

 meaning
• Recording the

 flow and/or
 outputs

• Fosters program
 comprehension

• Improves code
 writing

• Supports learners
 to be able to
 analyse and
 explain code

• Exposes
 misconceptions

• Reduces
 cognitive load

• Helps learners
 develop a
 consistent
 notional
 machine

Benefits of tracing:

Variables table

counter

1

2

3

4

What is output?

Happy days

Happy days

Happy days

End of program

In the example above, elements of the program �ow and code are provided. By completing

Counter = 1

while counter < 4 :

print ("End of program")

 print ("Happy days")

 counter = counter + 1

True

Fa
lse

1

1. Highlight all the

 expressions

2. Use arrows to

 show the order of

 execution

3. Follow the

 program and fill

 in the variables

 table and the

 output box

the variables table, learners can demonstrate their understanding of the program through
code tracing.

http://ncce.io/qr14_1
http://ncce.io/qr14_2
http://ncce.io/qr14_3
http://ncce.io/qr14_3
http://ncce.io/qr14_4

References
1 Donaldson, P. and Cutts, Q., 2018, October. Flexible low-cost activities to develop novice code comprehension skills in schools. In Proceedings of the 13th Workshop

 in Primary and Secondary Computing Education (pp. 1-4).

2 Hertz, M. and Jump, M., 2013, March. Trace-based teaching in early programming courses. In Proceeding of the 44th ACM Technical Symposium on Computer Science

 Education (pp. 561-566).

3 Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R., Moström, J.E., Sanders, K., Seppälä, O. and Simon, B., 2004. A multi-national

 study of reading and tracing skills in novice programmers. ACM SIGCSE Bulletin, 36(4), pp. 119-150.

4 Du Boulay, B., 1986. Some difficulties of learning to program. Journal of Educational Computing Research, 2(1), pp. 57-73.

5 National Centre for Computing Education, Pedagogy Quick Reads: Using PRIMM to structure programming lessons. Available from: ncce.io/qr11

Benefits?
Harrington identified that when learning programming, learners build their understanding in a hierarchical way, with tracing at
the most basic level, then explaining the code, before they progress on to writing. Many other studies have been completed
based on this theory. Hertz and Jump, who developed the ‘trace-based-teaching’ model, found that starting a class with 20 to
30 minutes of tracing increased attainment and decreased drop-out rates. A 2004 study found that learners who could trace
effectively less than 50% of the time could also not explain it effectively. If we accept there is a broad consensus advocating
code tracing as an effective strategy with a broad range of evidence to support the claim, what should we consider when using
it in the classroom?

Was this Pedagogy Quick Read useful? Share your thoughts and feedback at: ncce.io/pedagogyfeedback

The notional machine
To trace code effectively, learners must have some understanding of the notional machine. This concept was first
introduced by Benedict du Boulay and describes the conceptual model that learners have about how a computer
processes instructions and data.

The notional machine can look very different depending on the type of programming language being used. In Scratch,
it is simple to run more than one process concurrently (threading), whereas in most text-based languages (including
Python) this is more complex. This has implications for how we begin to teach programming in Scratch. Learners may
demonstrate that they can use threads but may not understand how the machine handles them. This gap in their
notional machine understanding can lead to gaps in their knowledge or to misconceptions. Encouraging learners to
use threads in Scratch without addressing the notional machine may lead to later problems for teachers when learn-
ers find threading more difficult to achieve in Python.

Lightening the load
Code tracing can contribute to a
reduction of the cognitive load placed
on learners.

In focusing learners' efforts on existing
and working programs, and answering
specific questions, educators can avoid
unnecessary extraneous load being

placed on their learners. By giving
learners the opportunity to trace code,
they can comprehend the code and its
function before they see it in action. This
approach also helps develop their
understanding of the notional machine —
how the code is executed. Many other
areas of the curriculum explore similar

ideas, such as Talk for Writing in
literacy and progressing from concrete
objects to abstract numerals in
mathematics.1

In context application
Code tracing can be incorporated in the classroom as a stand-alone activity or as part of a wider approach.
• The PRIMM (Predict, Run, Investigate, Modify, Make) approach is ideally suited to it as it requires learners to Predict in its
 first step, which involves reading and tracing.
• Begin a programming activity or project by providing learners with an existing project or snippet of code.
• Tracing is also a good way to check learners’ understanding of the capabilities of the notional machine. Using examples
 where specific misconceptions may lead to an incorrect solution, the act of tracing can expose and help address this
 misconception.

2

3

4

5

http://ncce.io/qr14_5
http://ncce.io/qr14_6
http://ncce.io/qr14_2
http://ncce.io/qr14_7
http://ncce.io/qr14_8
http://ncce.io/qr14_9
http://ncce.io/qr14_10

