
Pair programming is a pedagogical approach that you can use in your
classroom which involves learners working together on a problem to
develop programs. This Quick Read aims to highlight the benefits of the
approach, as well as factors to consider when applying pair programming
in the classroom. Driver/navigator

 Learners take turns playing the role of the
 driver and the navigator, swapping roles at
 regular intervals
 The driver controls the keyboard and mouse
 and will write the code
 The navigator focusses on the wider aims
 of the task, spots errors, problem-solves,
 and reads out instructions to the driver

Benefits
 Reduction in individual cognitive load via
 the collective working memory effect
 Improved confidence in finding solutions,
 particularly among female students
 Improved quality of programs (fewer errors,
 more efficient and elegant code)
 Retention of learners’ interest in the
 activities, lessons, and subject

Key considerations
 Communication is key: spend time
 modelling, emphasising, and rewarding
 these skills
 Spend time ahead of the lesson carefully
 planning the pairings based on skills,
 personalities, or friendships
 Ensure that both the driver and navigator
 are always working on the same task at the
 same time
 Experiment with length of intervals to suit
 your learners’ needs
 Ensure that summative assessment is based
 on paired and individual work/tests, with a
 greater weighting to individual work
 Check that both members of the pair are
 fulfilling their roles, and do not allow one
 to dominate

Pedagogy Quick Reads
Pair programming supports learners to produce better

solutions to complex programming problems

What is pair programming?
Pair programming is an approach where two people work together to
write a program or solve a problem whilst sharing a single computer.
Pair programming is routinely used in the software industry and soon
came to education as the observed benefits became clear.

Application of this concept is more structured than simply asking two
learners to work together. Pairing learners without giving guidance
as to how you want them to work together can often lead to one, or
both, learners quickly losing focus. There needs to be an initial
investment of time to develop effective paired work. Ideally, both
learners should be engaged and contributing equally to the task.
Poor communication can be detrimental to the pair’s collaboration
and can cancel out the benefits of pair programming. Therefore, an
essential part of making pair programming a success is spending time
ensuring that learners have a good understanding of the roles that
they will fulfil during the task.

The driver will control the keyboard, mouse, or pen, depending on the
task. They will type the code or write out the algorithm as instructed by the navigator. These tasks have a low-level
cognitive demand for the learner and allow them to concentrate on writing code accurately, rather than also having to
focus on tasks such as problem-solving, deciphering the instructions, and algorithm development.

The navigator will support the driver, watching with a keen eye for any errors being made. The navigator will also play a
strategic role by thinking of alternative solutions to problems, reading the notes from the teacher, or even walking around
the class to look at what others are doing. These tasks have a higher cognitive demand than the tasks of the driver, but as
the navigator doesn’t have the responsibility of having to write the code, the extraneous load on each member of the pair
is reduced.

Learners choose, or are assigned, an initial role and once the task has started, they swap roles regularly — approximately
every 5 to 10 minutes (depending on the activity). This will make sure that everyone is playing an equal and active role,
and they are encouraged to think in different ways and both take ownership of the problem that they are solving.

Summary

Cognitive load
shared via

collective memory

effective
Requires

communication

Swap roles regularly

NavigatorDriver
 Focusses on the wider aims of
 the task
 Provides guidance, spots errors,
 problem-solves, and helps decipher
 instructions

 Focusses on the implementation
 Operates the computer
 Takes advice from the navigator

http://ncce.io/qr03_1
http://ncce.io/qr03_2
http://ncce.io/qr03_3

Practical considerations
Pairing learners
As an educator, you will need to use your professional judgement to choose the best pairings in order to optimise the
benefits of the collective working memory effect. Key factors that could be considered when creating pairs include
the following:
 The learners’ personalities and social affinity (degree of comfort working together) should be considered for
 sustained or complex tasks, as the pair will benefit from their established relationship.
 Many studies advocate focussing on the ‘skill sets’ of the learners when pairing. Whilst there is no consensus from
 research as to which skill-based pairings are most successful, it is good to start by pairing learners with more advanced
 skills with learners with less advanced skills.

Whichever method of pairing you opt for, it is important to check in regularly with pairs to ensure that they are working
well.

Assessment
Learners should be assessed on both their paired work and their individual work. It is not recommended that any
summative assessment be based solely on the work that they complete as a pair. Preston makes two recommendations
for assessment to encourage individual accountability with pair programming:
 Assessment should require students to develop code, interpret code, or both
 Assessment scores for individuals should be weighted more heavily than the joint project score when determining the
 final grade

Further advice and guidance can be found in a middle school–focused paper by Werner and Denning.

References
Sands, P. (2019) Addressing cognitive load in the computer science classroom. ACM Inroads. 10 (1), 44–51. Available from: doi.org/10.1145/3210577.

Hanks, B., Fitzgerald, S., McCauley, R., Murphy, L. & Zander, C. (2011) Pair programming in education: a literature review. Computer Science Education. 21 (2), 135–173.

Werner, L., Hanks, B. & McDowell, C. (2004) Pair-programming helps female computer science students. ACM Journal of Educational Resources in Computing. 4 (1).
Available from: doi.org/10.1145/1060071.1060075.

Braught, G., Wahls, T. & Eby, L.M. (2011) The case for pair programming in the computer science classroom. ACM Transactions on Computing Education. 11 (2).
Available from: doi.org/10.1145/1921607.1921609.

Preston, D. (2005) Pair programming as a model of collaborative learning: a review of the research. Journal of Computing Sciences in Colleges. 20 (4), 39–45.

Werner, L. & Denning, J. (2009) Pair programming in middle school: What does it look like? Journal of Research on Technology in Education. 42 (1), 29–49.

1

2

3

4

5

6

Suggested benefits
There are several benefits from pair programming that have been observed through a range of studies. For example,
through pair programming, the learners’ individual cognitive load is reduced, because the tasks to complete are shared
between them. This is known as the collective working memory effect. Pair programming “separates tasks with low-level
demands (typing, computer management and navigation) from tasks with higher cognitive demands (syntax analysis,
algorithm development, problem search)”. However, poor communication between learners can create additional
cognitive load, which could eliminate the benefits of this effect (see ‘Pairing learners’).

Another benefit of pair programming is the likely improvement of the quality of the programs produced by the learners.
The learners support each other by debugging, spotting syntax errors as they occur, and making their code more elegant
and efficient.

Although most studies conducted so far have been with university students, they suggest that pair programming has its
biggest impact with learners with less advanced skills and lower confidence, or with groups of learners studying
introductory courses in programming.

Although research shows that pair programming benefits all learners, there is some evidence that suggests that the
technique has a greater impact on girls. In studies conducted on learners taking foundation programming courses in
higher education, Werner et al. reported a significant increase in confidence levels reported by the women who were
paired, compared with the women who worked independently. Similar findings by Braught et al. showed that women
who worked alone were more frustrated than women who worked in pairs.

Whilst evidence shows that pair programming can benefit girls in terms of results and their perception of the subject,
there is no evidence to suggest that it has a negative impact on boys. Hanks found that female students have more
positive impressions of pair programming than their male counterparts, but the differences were not statistically
significant. Allowing female learners to work together might help maximise some of the benefits of this approach.

1

2

3

4

5

2

1

5

6

http://ncce.io/qr03_2
http://ncce.io/qr03_4
http://ncce.io/qr03_5
http://ncce.io/qr03_6
http://ncce.io/qr03_7
http://ncce.io/qr03_8
http://ncce.io/qr03_9
http://ncce.io/qr03_10

