
When learners read static, completed programs, they aren’t exposed to
the troubleshooting that has already taken place to get to that end
product; this is known as being product focused. Live coding is when a
teacher develops the solution to a problem in front of the class for
learners to follow, which is known as being process focused. According to the literature, the key benefits

of live coding are that it:

 Reduces cognitive load, through
 collaboration
 Makes the process of learning programming
 easier to understand for novices
 Helps learners understand the process of
 debugging
 Exposes learners to good programming
 practices

Good practice when live coding:

 Select an appropriate programming challenge
 to teach a new concept, consolidate learning,
 or address misconceptions
 Talk to your learners and ask them questions
 Narrate your inner monologue
 Make (and fix) mistakes, either planned or
 accidental
 Slow down to give your learners time to
 process
 Show learners that code isn’t written from
 top to bottom in a linear form; it moves
 around as it is developed
 Be visible: let learners see your face, don’t
 turn your back for too long
 Pause to write things on the board: draw
 diagrams, work things out
 Use the largest font possible (without losing
 view of the full line of code)
 Break the code into small chunks
 (decompose) and use subgoal labelling while
 forming the solution

Strong links with worked examples:

Live coding helps novices learn by observing
an expert programmer working through a
problem, and so it has strong links to the
concept of worked examples. Further
information can be found on our Quick Read
(ncce.io/qr02).

Pedagogy Quick Reads
Live coding: using the thought processes of a programmer

to bring coding to life

Bringing programming to life
Novice programmers can often look at a finished program and have
the misconception that it has been written from top to bottom and
that a skilled programmer always knows exactly what they are doing
and can just write out what they need without making any mistakes.
As any programmer or even a writer knows, this is not the case.

Live coding demonstrates to learners the incremental nature of
programming. It shows that problems are decomposed into small
sections that are programmed, tested, and debugged, before the
next stage is worked upon. It models good programming practice
and shows learners that a plan for a program is formulated and
followed, rather than a solution formed on an ad hoc basis.

Bringing programming to life is essential to show learners that
program development is non-linear. The code moves around and
changes as a solution is developed. It models how programs should
be frequently tested to debug them quickly. It also shows learners
how to solve common errors that may occur when using a new
concept.

Key benefits

Product focused Process focused

 Learner observes ‘expert’
 programmer’s progress
 Mistakes and debugging
 highlighted
 Learner can ask questions, guide
 development or code along

 Learner observes finished solution
 to a specific problem
 Learners infer reasons behind
 design decisions
 Reinforces 1:1 problem to solution
 misconception

Cognitive apprenticeships
The idea of cognitive apprenticeships was introduced by Collins et al. in 1987. They believed that “teaching methods
should be designed to give students the opportunity to observe, engage in, and invent or discover expert strategies in
context”.

At the modelling stage of cognitive apprenticeships, an expert shows learners how to carry out a task, which “requires
the externalization of usually internal (cognitive) processes and activities”. In live coding, an educator develops a program
in front of a class while highlighting their choices, decisions, mistakes, and debugging strategies.

1, 4

2

2

http://ncce.io/qr05_1
http://ncce.io/qr05_2
http://ncce.io/qr05_3

Slowing down to get the best results
Live coding is very different to reading solutions on a worksheet or in a textbook. Those examples show a final, polished
solution without any insight into how the programmer has made decisions about their code. The Role of Live-coding
paper states that “when students begin to learn programming, usually they don’t have a good idea about where to start”.

If you write your solution in front of learners it forces you to slow down, which helps you think about what you are doing
and enables learners to follow your process. It is important that you don’t simply copy and paste the solution from one
tab into a new window; this defeats the purpose and your learners may get lost very quickly. You could write some notes
about how you solved the problem and keep these on your desk as a prompt.

Learners benefit from following the process of your work, as it keeps them engaged in finding the solution. This is
another reason why slowing down is important. You can chunk the demonstration and have sections where learners
watch and sections where they code. It is important that they don’t miss key things while they are typing, so monitor
their progress as you carry out your session.

You can also provide video recordings of your sessions to help learners who may need a recap or learn at a different pace.
If you decide to record your live coding session, make sure you stick to the live coding principles and don’t create a
step-by-step tutorial instead.

References
Halverson, E., Halverson, R., Patel, J., Raj, A. (2018) Role of live-coding in learning introductory programming. ACM. 13, 1–8. Available from: https://doi.org/10.1145/3279720.3279725

Brown, J.S., Collins, A., Newman, S. E. (1987) Cognitive apprenticeship: teaching the craft of reading, writing and mathematics. BBN Laboratories, Cambridge, MA., Centre for
the Study of Reading, University of Illinois. Report number: 403.

Wilson, G. (2009) Teaching tech together: how to create and deliver lessons that work and build a teaching community around them. Abingdon, Taylor & Francis. Available from:
https://teachtogether.tech/#s:performance-live

Sands, P. (2019) Addressing cognitive load in the computer science classroom. ACM Inroads. 10 (1), 45–51. Available from: https://dl.acm.org/doi/10.1145/3210577

Chu, K., Lasry, N., Mazur, E., Miller, K. (2013) Role of physics lecture demonstrations in conceptual learning. Physical review physics education research. 9 (2), 1–5. Available from:
https://journals.aps.org/prper/pdf/10.1103/PhysRevSTPER.9.020113

1

2

3

4

5

Cognitive apprenticeships (cont.)
Coaching (an aspect of cognitive apprenticeships) is where learners are given a challenge that is slightly too much for
them to handle but are supported through the solution through feedback and modelling. Live coding is a great example
of a coaching strategy, guiding learners through a task that would usually be unattainable.

Predicting testing and debugging
When carrying out a live coding session, it is important that it doesn’t become a tutorial that leads learners to the
perfect solution on their first attempt. The learners are part of the journey. The best way to engage them is to ask them
to make predictions about the program before it is run.

Wilson’s Teaching Tech Together emphasises the importance of making mistakes while live coding. Mistakes should be
“embraced” because they allow learners to see that programmers don’t get it right first time and often have to review
and fix their work to find a solution.

When live coding, you should plan intentional mistakes but should also be confident when making unintentional
mistakes. Intentional mistakes should link to common errors or learner misconceptions in order to target and alleviate
them. You should also continually test your program. This helps learners see this as a natural way to program and teaches
them to frequently test their own work.

When making intentional mistakes, encourage learners to predict what will happen, before running the code. Doing so
will help learners suggest strategies to fix those errors. Miller et al. discovered that “students who predict are
significantly more likely to correctly report the outcome of a demonstration”. Outcomes were improved whether their
prediction was correct or incorrect. Therefore, asking prediction-focused questions while live coding is an important
part of the process.

1

1

3

5

http://ncce.io/qr05_2
http://ncce.io/qr05_4
http://ncce.io/qr05_5
http://ncce.io/qr05_6
http://ncce.io/qr05_7
http://ncce.io/qr05_8

